Combined Effects of Moderate Hypoxia and Sleep Restriction on Mental Workload
<p>Performance to the MATB-II tracking task (<b>A</b>), NASA-TLX subjective scores (<b>B</b>), and accuracy (ACC) and reaction time (RT) to the auditory task ((<b>C</b>) and (<b>D</b>), respectively) in the four experimental conditions (Habitual sleep/Normoxia, Habitual sleep/Hypoxia, Sleep restriction/Normoxia, Sleep restriction/Hypoxia) and at the three MW difficulty levels (Low, Medium, High) * is a significant difference with the Habitual sleep/Normoxia condition, <span class="html-italic">p</span> < 0.05).</p> "> Figure 2
<p>Changes in peripheral oxygen saturation (SpO<sub>2</sub>), respiratory (breathing rate), and cardiac parameters (heart rate and heart rate variability parameters) in the four experimental conditions (Habitual sleep/Normoxia, Habitual sleep/Hypoxia, Sleep restriction/Normoxia, Sleep restriction/Hypoxia) and at the three MATB-II MW difficulty levels (Low, Medium, High) * is a significant difference with the Habitual sleep/Normoxia condition, <span class="html-italic">p</span> < 0.05).</p> "> Figure 3
<p>Changes in physiological Eye tracking parameters in the four experimental conditions (Habitual sleep/Normoxia, Habitual sleep/Hypoxia, Sleep restriction/Normoxia, Sleep restriction/Hypoxia) and at the three MATB-II MW difficulty levels (Low, Medium, High). Pupil size in raw values (<b>A</b>), pupil size in Z-score (<b>B</b>), an example of the Pupil Dilatation Response (PDR) at the three MATB-II MW difficulty levels (<b>C</b>), amplitude and latency ((<b>D</b>) and (<b>E</b>), respectively) of PDR. * is a significant difference with the Habitual sleep/Normoxia condition, <span class="html-italic">p</span> < 0.05).</p> "> Figure 4
<p>(<b>A</b>). Correlation analysis (with Pearson coefficient, R and P) between physiological parameters and MATB-II tracking performance in the four experimental conditions (Habitual sleep/Normoxia, Habitual sleep/Hypoxia, Sleep restriction/Normoxia, Sleep restriction/Hypoxia). Only parameters showing a significant correlation (corrected <span class="html-italic">p</span> < 0.05) with MATB-II tracking performance (RMSD value) in Habitual sleep/Normoxia were presented. <span class="html-italic">p</span> values take into account multiple comparison corrections [<a href="#B27-clockssleep-06-00024" class="html-bibr">27</a>] (<b>B</b>): examples of repeated-measures correlations between MATB-II tracking performance (RMSD values) and heart, breathing rate, and amplitude and Z-score of the PDR response in the four experimental conditions.</p> "> Figure 5
<p>Illustration of the four subtasks of the Multi-Attribute Task Battery (MATB)-II and the auditory Oddball-like task: SYSTEM MONITORING (<b>A</b>) task in the upper left corner where participants had to respond as quickly as possible to scale fluctuations via keystrokes, TRACKING (<b>B</b>) task in the upper corner where participants had to keep a tracker as close to the center with a joystick, COMMUNICATIONS (<b>D</b>) task in the bottom left corner where participants had to only answer broadcast messages that matched their call signs and RESSOURCE MANAGEMENT (<b>E</b>) task in the bottom right corner that required participants to keep tanks’ levels as close to target level as possible (2500 for the left and 1000 for right) by managing eight pumps. AUDITORY ODDBALL-LIKE (<b>F</b>) task that requires ignoring frequent tone and detecting infrequent auditory stimulus. (<b>C</b>) A workload rating survey is not a task but an automatic evaluation of the temporal progression; no action is required.</p> "> Figure 6
<p>The study protocol. The order of conditions is: Habitual sleep Normoxia (HSNO), Habitual sleep Hypoxia (HSHY), Sleep restriction Normoxia (SRNO), Sleep restriction Hypoxia (SRHY). The levels of MATB-II difficulty (low, medium, or high) are randomized. Black square: NASA-TLX test.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Subjective Scale (NASA-TLX)
2.2. MATB-II Performance
2.3. Heart Rate and Heart Rate Variability
2.4. Respiratory Activity
2.5. SpO2
2.6. Electrodermal Activity
2.7. Eye Tracking
2.8. Correlations (Pearson)
2.9. Ordinal Logistic Regression
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Mental Workload Tasks
4.2.1. Multi-Attribute Task Battery (MATB-II)
4.2.2. Additional Auditory Task
4.2.3. Mental Workload Levels
4.2.4. Subjective Assessment
4.3. Electrophysiological Recording and Processing
4.4. Normobaric Hypoxia Exposure
4.5. Sleep Conditions
4.6. Protocol
- -
- Normoxia, (NO, FIO2 at 21%) after a habitual night’s sleep (HS, >6 h TST) (HSNO).
- -
- Normoxia, (NO, FIO2 at 21%) after a night of sleep restriction (SR, <3 h TST) (SRNO).
- -
- Normobaric hypoxia (HY, FIO2 at 13.6%) after a habitual night’s sleep (HS, >6 h TST) (HSHY).
- -
- Normobaric hypoxia (HY, FIO2 at 13.6%) after a night of sleep restriction (SR, <3 h TST) (SRHY).
4.7. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Definitions and References for Physiological Parameters
Domain | Feature | Definition | References |
---|---|---|---|
Time domain | RMSSD | The square root of the mean of the squared successive differences between adjacent RR intervals | [73,74] |
CVI | Cardiac Vagal Index: index of cardiac parasympathetic function. Logarithm of the product of longitudinal (4*SD2) and transverse variability (4*SD1) | [75] | |
SDNN | The standard deviation of the RR intervals | [6,73] | |
CVNN | Coefficient of variation. The standard deviation of the RR intervals (SDNN) divided by the mean of the RR intervals (MeanNN) | [73] | |
pNN50 | The proportion of RR intervals greater than 50 ms | [73,74] | |
HTI | Heart rate variability triangular index. Calculates the integral of the density of the R-R interval histogram divided by its height per 5 min | [74] | |
TINN | Triangular interpolation. Baseline width of the RR intervals distribution obtained by triangular interpolation (approximation of the RR interval distribution) | [74] | |
Frequency domain | HFn | Normalized high frequency, obtained by dividing the high-frequency power (0.15 to 0.4 Hz) by the total powe. | [6,73] |
LFn | Normalized low frequency, obtained by dividing the low-frequency power (0.04 to 0.15 Hz) by the total power. | [6,73] | |
VLF | Spectral power of very low frequencies (0.0033 to 0.04 Hz). | [6,73] | |
LF/HF | Low-frequency power/high-frequency power. | [6,74] | |
Entropy | ShanEN | Basic measure of entropy (quantify the amount of information in a variable) | [74,76] |
ApEn | Approximate entropy. Quantify the amount of regularity and the unpredictability of fluctuations over time-series data (complexity of physiological time series) | [74] | |
SampEn | The conditional probability that two vectors that are close to each other form dimensions will remain close at the next m + 1 component. | [73,74] |
Domain | Feature | Definition | References |
---|---|---|---|
Time domain | Rate | Mean respiratory rate | [6,9] |
Volume | Amplitude | Mean respiratory amplitude. | [9] |
parameters | Inspiration | Average inspiratory duration. | [9] |
Expiration | Average expiratory duration. | [9] | |
Frequency domain | HFn | Normalized high frequency, obtained by dividing the low-frequency power (0.004 to 0.15 Hz) by total power. | [57] |
LFn | Normalized low frequency, obtained by dividing the low-frequency power (0.15 to 0.4 Hz) by the total power | [57] |
Domain | Feature | Definition | References |
---|---|---|---|
Pupil size | Raw value | Mean pupil size | [15,54,77] |
Z-score | (raw value—mean baseline value)/baseline standard deviation | ||
Pupil dilation | Amplitude | The amplitude of phasic dilation of the pupil peaking 1–1.6 s after the auditory stimulus | [78,79] |
response (PDR) | Latency | Latency of phasic dilation of the pupil peaking 1–1.6 s after the auditory stimulus | |
Time Return | Average value phasic dilation of the pupil peaking 1.6–2 s after the auditory stimulus |
References
- Gutzwiller, R.S.; Wickens, C.D.; Clegg, B.A. Workload Overload Modeling: An Experiment with MATB II to Inform a Computational Model of Task Management. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting; SAGE Publications Sage CA: Los Angeles, CA, USA, 2014; Volume 58, pp. 849–853. [Google Scholar]
- Hancock, P.; Williams, G.; Manning, C. Influence of Task Demand Characteristics on Workload and Performance. Int. J. Aviat. Psychol. 1995, 5, 63–86. [Google Scholar] [CrossRef]
- Dahlstrom, N.; Nahlinder, S. Mental Workload in Aircraft and Simulator during Basic Civil Aviation Training. Int. J. Aviat. Psychol. 2009, 19, 309–325. [Google Scholar] [CrossRef]
- Dehais, F.; Somon, B.; Mullen, T.; Callan, D.E. A Neuroergonomics Approach to Measure Pilot’s Cognitive Incapacitation in the Real World with EEG. In Advances in Neuroergonomics and Cognitive Engineering; Springer: Cham, Switzerland, 2021; pp. 111–117. [Google Scholar]
- Eggemeier, F.T.; Wilson, G.F.; Kramer, A.F.; Damos, D.L. Workload Assessment in Multitask Environments. In Multiple Task Performance; CRC Press: Boca Raton, FL, USA, 2020; pp. 207–216. [Google Scholar]
- Charles, R.L.; Nixon, J. Measuring Mental Workload Using Physiological Measures: A Systematic Review. Appl. Ergon. 2019, 74, 221–232. [Google Scholar] [CrossRef]
- Shaw, D.M.; Cabre, G.; Gant, N. Hypoxic Hypoxia and Brain Function in Military Aviation: Basic Physiology and Applied Perspectives. Front. Physiol. 2021, 12, 665821. [Google Scholar] [CrossRef]
- Bustamante-Sánchez, A.; Gil-Cabrera, J.; Tornero-Aguilera, J.F.; Fernandez-Lucas, J.; Ramos-Campo, D.J.; Clemente-Suárez, V.J. Effects of Hypoxia on Selected Psychophysiological Stress Responses of Military Aircrew. BioMed Res. Int. 2021, 2021, 6633851. [Google Scholar] [CrossRef]
- Grassmann, M.; Vlemincx, E.; Von Leupoldt, A.; Mittelstädt, J.M.; Van den Bergh, O. Respiratory Changes in Response to Cognitive Load: A Systematic Review. Neural Plast. 2016, 2016, 8146809. [Google Scholar] [CrossRef]
- Watts, M.E.; Pocock, R.; Claudianos, C. Brain Energy and Oxygen Metabolism: Emerging Role in Normal Function and Disease. Front. Mol. Neurosci. 2018, 11, 216. [Google Scholar] [CrossRef] [PubMed]
- McMorris, T.; Hale, B.J.; Barwood, M.; Costello, J.; Corbett, J. Effect of Acute Hypoxia on Cognition: A Systematic Review and Meta-Regression Analysis. Neurosci. Biobehav. Rev. 2017, 74, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Fabries, P.; Gomez-Merino, D.; Sauvet, F.; Malgoyre, A.; Chennaoui, M. Sleep Loss Effects on Physiological and Cognitive Responses to Systemic Environmental Hypoxia. Front. Physiol. 2022, 13, 1046166. [Google Scholar] [CrossRef] [PubMed]
- Mertens, H.W.; Collins, W.E. The Effects of Age, Sleep Deprivation, and Altitude on Complex Performance. Hum. Factors 1986, 28, 541–551. [Google Scholar] [CrossRef]
- Arnal, P.J.; Sauvet, F.; Leger, D.; Van Beers, P.; Bayon, V.; Bougard, C.; Rabat, A.; Millet, G.Y.; Chennaoui, M. Benefits of Sleep Extension on Sustained Attention and Sleep Pressure before and during Total Sleep Deprivation and Recovery. Sleep 2015, 38, 1935–1943. [Google Scholar] [CrossRef] [PubMed]
- Wanyan, X.; Zhuang, D.; Zhang, H. Improving Pilot Mental Workload Evaluation with Combined Measures. Bio-Med. Mater. Eng. 2014, 24, 2283–2290. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Jiang, N.; Pan, T.; Si, H.; Li, Y.; Zou, W. Cognitive Load Identification of Pilots Based on Physiological-Psychological Characteristics in Complex Environments. J. Adv. Transp. 2020, 2020, 1–16. [Google Scholar] [CrossRef]
- Pontiggia, A.; Gomez-Merino, D.; Quiquempoix, M.; Beauchamps, V.; Boffet, A.; Fabries, P.; Chennaoui, M.; Sauvet, F. MATB for Assessing Different Mental Workload Levels: A Systematic Review. Front. Physiol. 2024, 15, 1408242. [Google Scholar]
- Singh, A.L.; Tiwari, T.; Singh, I.L. Performance Feedback, Mental Workload and Monitoring Efficiency. J. Indian Acad. Appl. Psychol. 2010, 36, 151–158. [Google Scholar]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research. In Advances in Psychology; Elsevier: Amsterdam, The Netherlands, 1988; Volume 52, pp. 139–183. [Google Scholar]
- Kong, Y.; Posada-Quintero, H.F.; Gever, D.; Bonacci, L.; Chon, K.H.; Bolkhovsky, J. Multi-Attribute Task Battery Configuration to Effectively Assess Pilot Performance Deterioration during Prolonged Wakefulness. Inform. Med. Unlocked 2022, 28, 100822. [Google Scholar] [CrossRef]
- Caldwell Jr, J.A.; Caldwell, J.L.; Brown, D.L.; Smith, J.K. The Effects of 37 Hours of Continuous Wakefulness on the Physiological Arousal, Cognitive Performance, Self-Reported Mood, and Simulator Flight Performance of F-117A Pilots. Mil. Psychol. 2004, 16, 163–181. [Google Scholar] [CrossRef]
- Bouak, F.; Vartanian, O.; Hofer, K. Performance and Health Effects of Mild Hypoxic Hypoxia in Simulated 6-Hour Exposures between 2438 and 3048 Metres. J. Mil. Veteran Fam. Health 2019, 5, 40–49. [Google Scholar] [CrossRef]
- Griffith, C.D.; Mahadevan, S. Human Reliability under Sleep Deprivation: Derivation of Performance Shaping Factor Multipliers from Empirical Data. Reliab. Eng. Syst. Saf. 2015, 144, 23–34. [Google Scholar] [CrossRef]
- Hartzler, B.M. Fatigue on the Flight Deck: The Consequences of Sleep Loss and the Benefits of Napping. Accid. Anal. Prev. 2014, 62, 309–318. [Google Scholar] [CrossRef]
- Jung, C.M.; Ronda, J.M.; Czeisler, C.A.; Wright Jr, K.P. Comparison of Sustained Attention Assessed by Auditory and Visual Psychomotor Vigilance Tasks Prior to and during Sleep Deprivation. J. Sleep Res. 2011, 20, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Temme, L.A.; Wittels, H.L.; Wishon, M.J.; St. Onge, P.; McDonald, S.M.; Hecocks, D.; Wittels, S.H. Continuous Physiological Monitoring of the Combined Exposure to Hypoxia and High Cognitive Load in Military Personnel. Biology 2023, 12, 1398. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Chandra, S.; Sharma, G.; Verma, K.; Mittal, A.; Jha, D. EEG Based Cognitive Workload Classification during NASA MATB-II Multitasking. Int. J. Cogn. Res. Sci. Eng. Educ. 2015, 3, 35–42. [Google Scholar] [CrossRef]
- Caldwell, J.A.; Ramspott, S. Effects of Task Duration on Sensitivity to Sleep Deprivation Using the Multi-Attribute Task Battery. Behav. Res. Methods Instrum. Comput. 1998, 30, 651–660. [Google Scholar] [CrossRef]
- Ke, Y.; Qi, H.; Zhang, L.; Chen, S.; Jiao, X.; Zhou, P.; Zhao, X.; Wan, B.; Ming, D. Towards an Effective Cross-Task Mental Workload Recognition Model Using Electroencephalography Based on Feature Selection and Support Vector Machine Regression. Int. J. Psychophysiol. 2015, 98, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Lam, T.K.; Vartanian, O.; Hollands, J.G. The Brain under Cognitive Workload: Neural Networks Underlying Multitasking Performance in the Multi-Attribute Task Battery. Neuropsychologia 2022, 174, 108350. [Google Scholar] [CrossRef] [PubMed]
- Wickens, C.D. Multiple Resources and Mental Workload. Hum. Factors 2008, 50, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Dismukes, R.; Nowinski, J. Prospective Memory, Concurrent Task Management, and Pilot Error. Atten. Theory Pract. 2007, 4, 225. [Google Scholar]
- Roy, R.N.; Bonnet, S.; Charbonnier, S.; Campagne, A. Efficient Workload Classification Based on Ignored Auditory Probes: A Proof of Concept. Front. Hum. Neurosci. 2016, 10, 519. [Google Scholar] [CrossRef]
- Bottenheft, C.; Groen, E.L.; Mol, D.; Valk, P.J.; Houben, M.M.; Kingma, B.R.; van Erp, J.B. Effects of Heat Load and Hypobaric Hypoxia on Cognitive Performance: A Combined Stressor Approach. Ergonomics 2023, 66, 2148–2164. [Google Scholar] [CrossRef]
- Lopez, N.; Previc, F.H.; Fischer, J.; Heitz, R.P.; Engle, R.W. Effects of Sleep Deprivation on Cognitive Performance by United States Air Force Pilots. J. Appl. Res. Mem. Cogn. 2012, 1, 27–33. [Google Scholar] [CrossRef]
- Williams, T.B.; Badariotti, J.I.; Corbett, J.; Miller-Dicks, M.; Neupert, E.; McMorris, T.; Ando, S.; Parker, M.O.; Thelwell, R.C.; Causer, A.J.; et al. The Effects of Sleep Deprivation, Acute Hypoxia, and Exercise on Cognitive Performance: A Multi-Experiment Combined Stressors Study. Physiol. Behav. 2024, 274, 114409. [Google Scholar] [CrossRef]
- de Aquino Lemos, V.; Antunes, H.K.M.; dos Santos, R.V.T.; Lira, F.S.; Tufik, S.; de Mello, M.T. High Altitude Exposure Impairs Sleep Patterns, Mood, and Cognitive Functions. Psychophysiology 2012, 49, 1298–1306. [Google Scholar] [CrossRef]
- Falla, M.; Papagno, C.; Dal Cappello, T.; Vögele, A.; Hüfner, K.; Kim, J.; Weiss, E.M.; Weber, B.; Palma, M.; Mrakic-Sposta, S.; et al. A Prospective Evaluation of the Acute Effects of High Altitude on Cognitive and Physiological Functions in Lowlanders. Front. Physiol. 2021, 12, 569. [Google Scholar] [CrossRef]
- Issa, A.N.; Herman, N.M.; Wentz, R.J.; Taylor, B.J.; Summerfield, D.C.; Johnson, B.D. Association of Cognitive Performance with Time at Altitude, Sleep Quality, and Acute Mountain Sickness Symptoms. Wilderness Environ. Med. 2016, 27, 371–378. [Google Scholar] [CrossRef]
- Bogdanova, O.V.; Abdullah, O.; Kanekar, S.; Bogdanov, V.B.; Prescot, A.P.; Renshaw, P.F. Neurochemical Alterations in Frontal Cortex of the Rat after One Week of Hypobaric Hypoxia. Behav. Brain Res. 2014, 263, 203–209. [Google Scholar] [CrossRef]
- Libedinsky, C.; Smith, D.V.; Teng, C.S.; Namburi, P.; Chen, V.W.; Huettel, S.A.; Chee, M.W. Sleep Deprivation Alters Valuation Signals in the Ventromedial Prefrontal Cortex. Front. Behav. Neurosci. 2011, 5, 70. [Google Scholar] [CrossRef]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef]
- Arnsten, A.F. Stress Signalling Pathways That Impair Prefrontal Cortex Structure and Function. Nat. Rev. Neurosci. 2009, 10, 410–422. [Google Scholar] [CrossRef]
- Miyake, S.; Yamada, S.; Shoji, T.; Takae, Y.; Kuge, N.; Yamamura, T. Physiological Responses to Workload Change. A Test/Retest Examination. Appl. Ergon. 2009, 40, 987–996. [Google Scholar] [CrossRef]
- Malik, M. Heart Rate Variability: Standards of Measurement, Physiological Interpretation, and Clinical Use: Task Force of the European Society of Cardiology and the North American Society for Pacing and Electrophysiology. Ann. Noninvasive Electrocardiol. 1996, 1, 151–181. [Google Scholar] [CrossRef]
- Qu, H.; Gao, X.; Pang, L. Classification of Mental Workload Based on Multiple Features of ECG Signals. Inform. Med. Unlocked 2021, 24, 100575. [Google Scholar] [CrossRef]
- Honorato, F.S.; de Deus, L.A.; Reis, A.L.; Neves, R.V.P.; de Luca Corrêa, H.; Medeiros, A.P.B.; Haberland, D.F.; Medeiros, R.M.V.; Prestes, J.; Ferreira, C.E.S.; et al. Could Cardiac Autonomic Modulation Be an Objective Method to Identify Hypobaric Hypoxia Symptoms at 25.000 Ft among Brazilian Military Airmen? Front. Physiol. 2022, 13, 1005016. [Google Scholar] [CrossRef]
- Iwasaki, K.; Ogawa, Y.; Aoki, K.; Saitoh, T.; Otsubo, A.; Shibata, S. Cardiovascular Regulation Response to Hypoxia during Stepwise Decreases from 21% to 15% Inhaled Oxygen. Aviat. Space Environ. Med. 2006, 77, 1015–1019. [Google Scholar]
- Klingner, J.; Tversky, B.; Hanrahan, P. Effects of Visual and Verbal Presentation on Cognitive Load in Vigilance, Memory, and Arithmetic Tasks. Psychophysiology 2011, 48, 323–332. [Google Scholar] [CrossRef]
- Wilson, G.F. An Analysis of Mental Workload in Pilots during Flight Using Multiple Psychophysiological Measures. Int. J. Aviat. Psychol. 2002, 12, 3–18. [Google Scholar] [CrossRef]
- Fairclough, S.H.; Venables, L. Prediction of Subjective States from Psychophysiology: A Multivariate Approach. Biol. Psychol. 2006, 71, 100–110. [Google Scholar] [CrossRef]
- Charles, R.; Nixon, J. Blink Counts Can Differentiate between Task Type and Load; Chartered Institute of Ergonomics & Human Factors: Loughborough, UK, 2017. [Google Scholar]
- Mark, J.A.; Curtin, A.; Kraft, A.E.; Ziegler, M.D.; Ayaz, H. Mental Workload Assessment by Monitoring Brain, Heart, and Eye with Six Biomedical Modalities during Six Cognitive Tasks. Front. Neuroergonomics 2024, 5, 1345507. [Google Scholar] [CrossRef]
- Marshall, S.P. Identifying Cognitive State from Eye Metrics. Aviat. Space Environ. Med. 2007, 78, B165–B175. [Google Scholar]
- Brookings, J.B.; Wilson, G.F.; Swain, C.R. Psychophysiological Responses to Changes in Workload during Simulated Air Traffic Control. Biol. Psychol. 1996, 42, 361–377. [Google Scholar] [CrossRef] [PubMed]
- Veltman, J.; Gaillard, A. Physiological Indices of Workload in a Simulated Flight Task. Biol. Psychol. 1996, 42, 323–342. [Google Scholar] [CrossRef]
- Vlemincx, E.; Taelman, J.; De Peuter, S.; Van Diest, I.; Van Den Bergh, O. Sigh Rate and Respiratory Variability during Mental Load and Sustained Attention. Psychophysiology 2011, 48, 117–120. [Google Scholar] [CrossRef]
- Benthem, K.V.; Shanahan, C.; Ma, C.; Fraser, A.; Herman, C.M. The NASA MATB-II Predicts Prospective Memory Performance During Complex Simulated Flight. In Proceedings of the 20th International Symposium on Aviation Psychology, Dayton, OH, USA, 7–10 May 2019; p. 67. [Google Scholar]
- Dehais, F.; Duprès, A.; Blum, S.; Drougard, N.; Scannella, S.; Roy, R.N.; Lotte, F. Monitoring Pilot’s Mental Workload Using ERPs and Spectral Power with a Six-Dry-Electrode EEG System in Real Flight Conditions. Sensors 2019, 19, 1324. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds III, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A New Instrument for Psychiatric Practice and Research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef]
- Santiago-Espada, Y.; Myer, R.R.; Latorella, K.A.; Comstock, J.R., Jr. The Multi-Attribute Task Battery Ii (Matb-Ii) Software for Human Performance and Workload Research: A User’s Guide. 2011. Available online: https://ntrs.nasa.gov/api/citations/20110014456/downloads/20110014456.pdf (accessed on 20 May 2024).
- Cegarra, J.; Valéry, B.; Avril, E.; Calmettes, C.; Navarro, J. OpenMATB: A Multi-Attribute Task Battery Promoting Task Customization, Software Extensibility and Experiment Replicability. Behav. Res. Methods 2020, 52, 1980–1990. [Google Scholar] [CrossRef]
- Ladouce, S.; Pietzker, M.; Manzey, D.; Dehais, F. Evaluation of a Headphones-Fitted EEG System for the Recording of Auditory Evoked Potentials and Mental Workload Assessment. Behav. Brain Res. 2024, 460, 114827. [Google Scholar] [CrossRef]
- Lafont, A.; Enriquez-Geppert, S.; Roy, R.; Leloup, V.; Dehais, F. Theta Neurofeedback and Pilots’ Executive Functioning. 2020. Available online: https://neuroergonomicsconference.um.ifi.lmu.de/wp-content/uploads/submissions/149.pdf (accessed on 20 May 2024).
- Ke, Y.; Jiang, T.; Liu, S.; Cao, Y.; Jiao, X.; Jiang, J.; Ming, D. Cross-Task Consistency of Electroencephalography-Based Mental Workload Indicators: Comparisons between Power Spectral Density and Task-Irrelevant Auditory Event-Related Potentials. Front. Neurosci. 2021, 15, 703139. [Google Scholar] [CrossRef]
- Bowers, M.A.; Christensen, J.C.; Eggemeier, F.T. The Effects of Workload Transitions in a Multitasking Environment. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Chicago, IL, USA, 27–31 October 2014; SAGE Publications Sage CA: Los Angeles, CA, USA, 2014; Volume 58, pp. 220–224. [Google Scholar]
- Makowski, D.; Pham, T.; Lau, Z.J.; Brammer, J.C.; Lespinasse, F.; Pham, H.; Schölzel, C.; Chen, S.A. NeuroKit2: A Python Toolbox for Neurophysiological Signal Processing. Behav. Res. Methods 2021, 53, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.; Lau, Z.J.; Chen, S.A.; Makowski, D. Heart Rate Variability in Psychology: A Review of HRV Indices and an Analysis Tutorial. Sensors 2021, 21, 3998. [Google Scholar] [CrossRef] [PubMed]
- Kamp, S.-M.; Donchin, E. ERP and Pupil Responses to Deviance in an Oddball Paradigm. Psychophysiology 2015, 52, 460–471. [Google Scholar] [CrossRef]
- Romine, W.; Schroeder, N.; Banerjee, T.; Graft, J. Toward Mental Effort Measurement Using Electrodermal Activity Features. Sensors 2022, 22, 7363. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Koval, J.J.; Mills, C.A.; Lee, K.-I.D. Determination of the Selection Statistics and Best Significance Level in Backward Stepwise Logistic Regression. Commun. Stat.-Simul. Comput. 2007, 37, 62–72. [Google Scholar] [CrossRef]
- Tiwari, A.; Albuquerque, I.; Parent, M.; Gagnon, J.-F.; Lafond, D.; Tremblay, S.; H. Falk, T. Multi-Scale Heart Beat Entropy Measures for Mental Workload Assessment of Ambulant Users. Entropy 2019, 21, 783. [Google Scholar] [CrossRef] [PubMed]
- Delliaux, S.; Delaforge, A.; Deharo, J.-C.; Chaumet, G. Mental Workload Alters Heart Rate Variability, Lowering Non-Linear Dynamics. Front. Physiol. 2019, 10, 565. [Google Scholar] [CrossRef] [PubMed]
- Toichi, M.; Sugiura, T.; Murai, T.; Sengoku, A. A New Method of Assessing Cardiac Autonomic Function and Its Comparison with Spectral Analysis and Coefficient of Variation of R–R Interval. J. Auton. Nerv. Syst. 1997, 62, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Lucchese, A.; Mossa, G.; Mummolo, G.; Sisto, F. A Shannon Entropy Graph-Based Model to Evaluate the Operator Mental Workload Involved in Procedure-Guided Tasks. In Proceedings of the 32nd European Modeling & Simulation Symposium, Virtual Conference, 16–18 September 2020. [Google Scholar]
- Marinescu, A.C.; Sharples, S.; Ritchie, A.C.; Sanchez Lopez, T.; McDowell, M.; Morvan, H.P. Physiological Parameter Response to Variation of Mental Workload. Hum. Factors 2018, 60, 31–56. [Google Scholar] [CrossRef]
- Iqbal, S.T.; Zheng, X.S.; Bailey, B.P. Task-Evoked Pupillary Response to Mental Workload in Human-Computer Interaction. In Proceedings of the CHI’04 Extended Abstracts on Human Factors in Computing Systems, Vienna, Austria, 24–29 April 2004; pp. 1477–1480. [Google Scholar]
- Recarte, M.Á.; Pérez, E.; Conchillo, Á.; Nunes, L.M. Mental Workload and Visual Impairment: Differences between Pupil, Blink, and Subjective Rating. Span. J. Psychol. 2008, 11, 374–385. [Google Scholar] [CrossRef]
Parameters | Difficulty F(2–176) | Hypoxia F(1–175) | Sleep Restriction F(1–175) | Diff. × Hyp. F(2–176) | Diff. × Sleep. F(2–176) | Hyp. × Sleep. F(1–175) | Diff. × Hyp. × Sleep. F(2–176) |
---|---|---|---|---|---|---|---|
NASA-TLX | 31.07 (0.001) | 1.56 (0.21) | 7.23 (0.008) | 0.26 (0.77) | 0.32 (0.73) | 3.47 (0.04) | 1.20 (0.31) |
Tracking (RMSD) | 7.38 (0.001) | 3.81 (0.05) | 8.12 (0.005) | 1.00 (0.37) | 0.52 (0.60) | 4.68 (0.03) | 0.24 (0.79) |
Auditory alarm (accuracy, ACC) | 7.73 (0.06) | 0.19 (0.66) | 0.62 (0.43) | 3.14 (0.04) | 0.72 (0.49) | 0.01 (0.98) | 1.86 (0.16) |
Auditory alarm (reaction time, RT) | 3.30 (0.07) | 3.10 (0.08) | 0.02 (0.90) | 0.13 (0.88) | 1.62 (0.20) | 16.49 (0.001) | 0.40 (0.67) |
Parameters | Difficulty F(2–176) | Hypoxia F(1–175) | Sleep Restriction F(1–175) | Diff. × Hyp. F(2–176) | Diff. × Sleep. F(2–176) | Hyp. × Sleep. F(1–175) | Diff. × Hyp. × Sleep. F(2–176) | |
---|---|---|---|---|---|---|---|---|
HR | 0.58 (0.56) | 210.0 (0.001) | 0.63 (0.43) | 0.35 (0.70) | 0.03 (0.97) | 2.97 (0.09) | 0.15 (0.86) | |
HRV | RMSSD | 2.41 (0.09) | 18.40 (0.001) | 0.14 (0.71) | 0.60 (0.55) | 0.33 (0.72) | 2.58 (0.11) | 0.18 (0.83) |
SDNN | 4.65 (0.01) | 13.05 (0.001) | 4.52 (0.04) | 0.85 (0.43) | 0.37 (0.69) | 4.41 (0.04) | 0.18 (0.84) | |
CVNN | 4.73 (0.01) | 0.29 (0.59) | 7.26 (0.008) | 0.55 (0.58) | 0.35 (0.70) | 3.26 (0.07) | 0.26 (0.77) | |
pNN50 | 1.12 (0.33) | 49.42 (0.001) | 0.05 (0.82) | 0.03 (0.97) | 0.03 (0.97) | 6.59 (0.01) | 0.07 (0.93) | |
HTI | 6.72 (0.01) | 1.51 (0.22) | 14.12 (0.001) | 0.72 (0.49) | 0.48 (0.53) | 7.91 (0.01) | 0.27 (0.76) | |
CVI | 5.28 (0.01) | 25.80 (0.001) | 2.36 (0.13) | 0.44 (0.64) | 0.23 (0.80) | 6.07 (0.02) | 0.08 (0.93) | |
TINN | 3.04 (0.05) | 6.58 (0.01) | 3.13 (0.08) | 1.15 (0.32) | 0.84 (0.43) | 9.87 (0.002) | 0.20 (0.82) | |
HFn | 0.25 (0.78) | 9.83 (0.002) | 25.78 (0.001) | 0.01 (1.00) | 0.50 (0.61) | 0.02 (0.88) | 1.11 (0.33) | |
LFn | 0.52 (0.60) | 20.76 (0.001) | 0.18 (0.67) | 0.15 (0.86) | 1.13 (0.33) | 4.10 (0.05) | 0.46 (0.63) | |
VLF | 0.69 (0.50) | 11.08 (0.001) | 2.48 (0.12) | 2.36 (0.10) | 1.26 (0.29) | 0.91 (0.34) | 0.14 (0.87) | |
LF/HF | 0.46 (0.63) | 29.52 (0.001) | 6.33 (0.01) | 0.24 (0.79) | 2.05 (0.13) | 5.04 (0.03) | 0.25 (0.78) | |
Entropy | SampEn | 1.03 (0.36) | 7.52 (0.007) | 5.22 (0.02) | 0.41 (0.66) | 0.06 (0.94) | 0.81 (0.37) | 0.07 (0.93) |
ApEN | 1.23 (0.30) | 1.27 (0.26) | 4.51 (0.04) | 0.21 (0.81) | 0.06 (0.94) | 0.24 (0.63) | 0.11 (0.81) | |
ShanEN | 6.47 (0.002) | 0.44 (0.51) | 14.63 (0.001) | 0.45 (0.64) | 0.06 (0.94) | 7.03 (0.009) | 0.04 (0.96) | |
RSP | Rate | 10.59 (0.001) | 0.02 (0.90) | 1.17 (0.28) | 0.16 (0.85) | 0.48 (0.62) | 2.11 (0.15) | 0.22 (0.80) |
Amplitude | 0.65 (0.52) | 4.95 (0.03) | 2.39 (0.14) | 0.84 (0.43) | 0.08 (0.92) | 1.24 (0.61) | 1.59 (0.20) | |
Inspiration (dur.) | 2.89 (0.06) | 0.31 (0.58) | 0.16 (0.69) | 0.17 (0.84) | 0.37 (0.69) | 0.01 (1.00) | 0.27 (0.77) | |
Expiration (dur.) | 6.10 (0.003) | 0.33 (0.57) | 0.72 (0.40) | 0.01 (1.00) | 0.35 (0.71) | 0.11 (0.74) | 0.41 (0.67) | |
HFn | 8.86 (0.001) | 0.53 (0.47) | 0.78 (0.38) | 0.62 (0.54) | 0.92 (0.40) | 2.28 (0.13) | 0.51 (0.60) | |
LFn | 1.00 (0.37) | 1.52 (0.22) | 3.35 (0.07) | 1.83 (0.16) | 0.28 (0.76) | 3.58 (0.06) | 0.07 (0.93) | |
SpO2 | 0.09 (0.91) | 619.1 (0.001) | 0.56 (0.45) | 0.02 (0.99) | 0.02 (0.98) | 1.34 (0.25) | 1.12 (0.33) | |
EDA | Phasic activity | 0.58 (0.56) | 0.43 (0.51) | 2.51 (0.12) | 0.45 (0.64) | 0.61 (0.55) | 0.08 (0.78) | 2.06 (0.13) |
Tonic activity | 0.04 (0.96) | 0.94 (0.33) | 1.06 (0.31) | 0.03 (0.97) | 0.01 (0.99) | 2.42 (0.12) | 0.09 (0.91) |
Parameters | Difficulty F(2–176) | Hypoxia F(1–175) | Sleep Restriction F(1–175) | Diff. × Hyp. F(2–176) | Diff. × Sleep. F(2–176) | Hyp. × Sleep. F(1–175) | Diff. x Hyp. × Sleep. F(2–176) |
---|---|---|---|---|---|---|---|
Pupil size | |||||||
Raw size | 9.23 (0.001) | 55.95 (0.001) | 18.65 (0.01) | 0.92 (0.40) | 0.15 (0.86) | 16.47 (0.001) | 0.08 (0.93) |
Z-score | 5.52 (0.006) | 4.10 (0.04) | 3.52 (0.05) | 0.27 (0.76) | 1.72 (0.10) | 5.12 (0.02) | 0.11 (0.89) |
Pupil dilation response (PDR) | |||||||
Amplitude (r) | 0.64 (0.53) | 4.03 (0.04) | 0.63 (0.43) | 0.64 (0.29) | 2.19 (0.12) | 14.24 (0.001) | 0.95 (0.29) |
Amplitude (Z) | 5.60 (0.005) | 0.99 (0.32) | 1.34 (0.23) | 0.24 (0.79) | 2.19 (0.12) | 20.61 (0.001) | 0.41 (0.66) |
Latency (r) | 3.46 (0.03) | 0.27 (0.63) | 1.79 (0.18) | 2.20 (0.11) | 2.11 (0.04) | 4.06 (0.05) | 1.92 (0.15) |
Latency (Z) | 5.25 (0.006) | 0.99 (0.32) | 1.41 (0.23) | 0.96 (0.39) | 0.26 (0.68) | 17.40 (0.001) | 0.18 (0.83) |
Time to return | 3.43 (0.04) | 5.88 (0.02) | 1.77 (0.18) | 1.42 (0.25) | 0.75 (0.47) | 14.6 (0.001) | 0.10 (0.91) |
Overall Model Test | ||||||||
---|---|---|---|---|---|---|---|---|
Models | Deviance | AIC | BIC | R2McF | χ2 | df | p | |
1 | ET | 271.06 | 284.07 | 320.13 | 0.04 | 17.35 | 4 | 0.01 |
2 | EDA | 305.30 | 313.33 | 327.12 | 0.01 | 1.10 | 2 | 0.57 |
3 | ECG | 304.87 | 312.82 | 342.11 | 0.01 | 3.56 | 6 | 0.73 |
4 | Br | 385.11 | 412.53 | 434.28 | 0.03 | 12.69 | 5 | 0.02 |
5 | ET + Br | 245.41 | 169.42 | 325.99 | 0.09 | 23.01 | 6 | 0.001 |
6 | ET + Br + ECG | 244.41 | 162.83 | 341.21 | 0.11 | 31.55 | 12 | 0.001 |
7 | ET + Br + EDA | 281.52 | 301.52 | 333.99 | 0.08 | 23.86 | 8 | 0.002 |
8 | ET + Br + ECG + SpO2 | 282.51 | 306.53 | 336.91 | 0.08 | 23.88 | 9 | 0.004 |
9 | ET + Br + ECG + EDA | 299.22 | 321.22 | 357.53 | 0.04 | 13.16 | 11 | 0.01 |
10 | ET + Br + ECG + EDA + SpO2 | 277.81 | 303.83 | 356.86 | 0.04 | 32.58 | 15 | 0.005 |
Confidence Interval | |||||||
---|---|---|---|---|---|---|---|
Predictor | Estimate | SE | Z | p | Ratio | Lower | Upper |
Breathing rate | 0.25 | 0.07 | 3.61 | 0.02 | 1.28 | 1.11 | 1.49 |
Breathing variability (HFn) | −0.47 | 0.1 | −4.80 | 0.05 | 0.93 | 0.89 | 1.00 |
Breathing variability (LFn) | 0.37 | 0.16 | 1.83 | 0.07 | 1.60 | 0.96 | 2.60 |
Pupil size (Z-score) | 0.47 | 0.63 | 1.81 | 0.07 | 1.60 | 0.98 | 2.63 |
PDR Amplitude (Z-score) | −0.14 | 0.07 | 0.61 | 0.02 | 0.87 | 0.74 | 0.91 |
PDR Latency (Z-score) | 0.05 | 0.02 | 1.30 | 0.11 | 1.02 | 1.01 | 1.10 |
PDR Return | −0.04 | 0.12 | -0.30 | 0.77 | 0.96 | 0.76 | 1.23 |
Event Frequency (per min) | Details | |||
---|---|---|---|---|
Low | Medium | High | ||
TRACK | Continue | Continue | Continue | Identical across all three levels |
SYSMON | 0.7 | 2.5 | 5.0 | Only F1–F4 are used |
RESMAN | 0.7 failures | 2.5 failures | 5.0 failures | Target: Tanks A = 2500 units Tanks B = 1000 units |
COMM | 0.7 | 2.5 | 5.0 | Target: 33% (low) or 25% (medium and high) |
ODDBALL | 12 | 12 | 12 | 20% target sound (identical across all 3 levels) |
Task Overlap | No | No | Yes | Some stimuli can be presented at the same time |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pontiggia, A.; Fabries, P.; Beauchamps, V.; Quiquempoix, M.; Nespoulous, O.; Jacques, C.; Guillard, M.; Van Beers, P.; Ayounts, H.; Koulmann, N.; et al. Combined Effects of Moderate Hypoxia and Sleep Restriction on Mental Workload. Clocks & Sleep 2024, 6, 338-358. https://doi.org/10.3390/clockssleep6030024
Pontiggia A, Fabries P, Beauchamps V, Quiquempoix M, Nespoulous O, Jacques C, Guillard M, Van Beers P, Ayounts H, Koulmann N, et al. Combined Effects of Moderate Hypoxia and Sleep Restriction on Mental Workload. Clocks & Sleep. 2024; 6(3):338-358. https://doi.org/10.3390/clockssleep6030024
Chicago/Turabian StylePontiggia, Anaïs, Pierre Fabries, Vincent Beauchamps, Michael Quiquempoix, Olivier Nespoulous, Clémentine Jacques, Mathias Guillard, Pascal Van Beers, Haïk Ayounts, Nathalie Koulmann, and et al. 2024. "Combined Effects of Moderate Hypoxia and Sleep Restriction on Mental Workload" Clocks & Sleep 6, no. 3: 338-358. https://doi.org/10.3390/clockssleep6030024
APA StylePontiggia, A., Fabries, P., Beauchamps, V., Quiquempoix, M., Nespoulous, O., Jacques, C., Guillard, M., Van Beers, P., Ayounts, H., Koulmann, N., Gomez-Merino, D., Chennaoui, M., & Sauvet, F., on behalf of the HYPSOM Investigator Group. (2024). Combined Effects of Moderate Hypoxia and Sleep Restriction on Mental Workload. Clocks & Sleep, 6(3), 338-358. https://doi.org/10.3390/clockssleep6030024