Role of Interferons in Mycobacterium tuberculosis Infection
<p>Mechanism of action of type I Interferons (IFNs). The receptor is made of two subunits: IFN-αR1 associated with Janus kinase 1 (JAK1) and IFN-αR2 associated with tyrosine kinase 2 (TYK2). Activation results in the phosphorylation of STAT1 and STAT2 which join with IRF-9 to form the Interferon-stimulated gene factor 3 (ISGF3) complex. The complex moves to the nucleus and binds IFN-stimulated response elements (ISRE) to initiate transcription. Type I IFN induces transcription of genes such as UBE2L6, which may encourage <span class="html-italic">M. tb</span> survival to the detriment of the host.</p> "> Figure 2
<p>Mechanism of action of type 2 IFNs. Type II IFN is the primary mediator which activates macrophages to produce reactive nitrogen species. Macrophages recognize <span class="html-italic">M. tb</span> using Toll-like receptors (TLR) and phagocytose the bacteria. Macrophages release IL-12 which drive Th1 cells to release type II IFN. The type II IFN receptor is made of the subunits IFN-ɣR1 and IFN-ɣR2 associated with JAK1 and JAK2, respectively. Activation results in formation of STAT1 homodimers that bind GAS in the nucleus.</p> "> Figure 3
<p>Nitric oxide (NO) produced by type II IFN-activated macrophages induce apoptosis of mycobacteria-infected macrophages by increasing outer mitochondrial membrane permeability. This causes leakage of cytochrome c and ultimately cell death.</p> "> Figure 4
<p>Signaling pathway of type III IFN. The receptor is made of two subunits: IFN-28Rα and IL-10R2. Type III IFN binds to the IFN-28Rα receptor which leads to a conformational change, resulting in the addition of IL-10R2. JAK1 and TYK2 then phosphorylate the intracellular domain of IFN-28Rα, allowing STAT to recognize it and bind and form a complex known as ISGF3. This ISGF3 complex moves into the nucleus and bind to the promoter region of ISG, known as ISRE, leading to IFN-stimulated gene products.</p> ">
Abstract
:1. Introduction
2. Role of Type I IFN (IFN-α/β) on M. tb Infection
3. Role of Type II IFN (IFN-γ) on M. tb infection
4. Role of Type III IFN (IFN-λ) on M. tb Infection
5. Methods
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Centers for Disease Control and Prevention. Latent TB Infection and TB Disease. 11 December 2020. Available online: https://www.cdc.gov/tb/topic/basics/tbinfectiondisease.htm (accessed on 29 August 2022).
- Gideon, H.P.; Flynn, J.L. Latent tuberculosis: What the host “sees”? Immunol. Res. 2011, 50, 202–212. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Tuberculosis Report 2021. Available online: https://www.who.int/publications/i/item/9789240037021 (accessed on 29 August 2022).
- Bierne, H.; Travier, L.; Mahlakõiv, T.; Tailleux, L.; Subtil, A.; Lebreton, A.; Paliwal, A.; Gicquel, B.; Staeheli, P.; Lecuit, M.; et al. Activation of type III interferon genes by pathogenic bacteria in infected epithelial cells and mouse placenta. PLoS ONE 2012, 7, e39080. [Google Scholar] [CrossRef] [PubMed]
- de Martino, M.; Lodi, L.; Galli, L.; Chiappini, E. Immune Response to Mycobacterium tuberculosis: A Narrative Review. Front Pediatr. 2019, 7, 350. [Google Scholar] [CrossRef] [PubMed]
- Orme, I.M.; Basaraba, R.J. The formation of the granuloma in tuberculosis infection. Semin Immunol. 2014, 26, 601–609. [Google Scholar] [CrossRef]
- Ramakrishnan, L. Revisiting the role of the granuloma in tuberculosis. Nat. Rev. Immunol. 2012, 12, 352–366. [Google Scholar] [CrossRef]
- Fensterl, V.; Chattopadhyay, S.; Sen, G.C. No Love Lost Between Viruses and Interferons. Annu. Rev. Virol. 2015, 2, 549–572. [Google Scholar] [CrossRef]
- de Weerd, N.A.; Nguyen, T. The interferons and their receptors--distribution and regulation. Immunol. Cell Biol. 2012, 90, 483–491. [Google Scholar] [CrossRef]
- Kyogoku, C.; Smiljanovic, B.; Grün, J.R.; Biesen, R.; Schulte-Wrede, U.; Häupl, T.; Hiepe, F.; Alexander, T.; Radbruch, A.; Grützkau, A. Cell-specific type I IFN signatures in autoimmunity and viral infection: What makes the difference? PLoS ONE 2013, 8, e83776. [Google Scholar] [CrossRef]
- Lin, J.D.; Feng, N.; Sen, A.; Balan, M.; Tseng, H.; McElrath, C.; Smirnov, S.V.; Peng, J.; Yasukawa, L.L.; Durbin, R.K.; et al. Distinct Roles of Type I and Type III Interferons in Intestinal Immunity to Homologous and Heterologous Rotavirus Infections. PLoS Pathog 2016, 12, e1005600. [Google Scholar] [CrossRef]
- Orme, I.M.; Cooper, A.M. Cytokine/chemokine cascades in immunity to tuberculosis. Immunol. Today 1999, 20, 307–312. [Google Scholar] [CrossRef]
- Gao, X.F.; Yang, Z.W.; Li, J. Adjunctive therapy with interferon-gamma for the treatment of pulmonary tuberculosis: A systematic review. Int. J. Infect Dis. 2011, 15, e594–e600. [Google Scholar] [CrossRef]
- Manca, C.; Tsenova, L.; Bergtold, A.; Freeman, S.; Tovey, M.; Musser, J.M.; Barry, C.E., 3rd; Freedman, V.H.; Kaplan, G. Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha /beta. Proc. Natl. Acad. Sci. USA 2001, 98, 5752–5757. [Google Scholar] [CrossRef]
- Moreira-Teixeira, L.; Mayer-Barber, K.; Sher, A.; O’Garra, A. Type I interferons in tuberculosis: Foe and occasionally friend. J. Exp. Med. 2018, 215, 1273–1285. [Google Scholar] [CrossRef]
- McNab, F.; Mayer-Barber, K.; Sher, A.; Wack, A.; O’Garra, A. Type I interferons in infectious disease. Nat. Rev. Immunol. 2015, 15, 87–103. [Google Scholar] [CrossRef]
- Platanias, L.C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 2005, 5, 375–386. [Google Scholar] [CrossRef]
- Lazear, H.M.; Schoggins, J.W.; Diamond, M.S. Shared and Distinct Functions of Type I and Type III Interferons. Immunity 2019, 50, 907–923. [Google Scholar] [CrossRef]
- Ivashkiv, L.B.; Donlin, L.T. Regulation of type I interferon responses. Nat. Rev. Immunol. 2014, 14, 36–49. [Google Scholar] [CrossRef]
- Gao, J.; Li, C.; Li, W.; Chen, H.; Fu, Y.; Yi, Z. Increased UBE2L6 regulated by type 1 interferon as potential marker in TB. J. Cell Mol. Med. 2021, 25, 11232–11243. [Google Scholar] [CrossRef]
- Scriba, T.J.; Penn-Nicholson, A.; Shankar, S.; Hraha, T.; Thompson, E.G.; Sterling, D.; Nemes, E.; Darboe, F.; Suliman, S.; Amon, L.M.; et al. equential inflammatory processes define human progression from M. tuberculosis infection to tuberculosis disease. PLoS Pathog 2017, 13, e1006687. [Google Scholar] [CrossRef]
- Manca, C.; Tsenova, L.; Freeman, S.; Barczak, A.K.; Tovey, M.; Murray, P.J.; Barry, C.; Kaplan, G. Hypervirulent M. tuberculosis W/Beijing strains upregulate type I IFNs and increase expression of negative regulators of the Jak-Stat pathway. J. Interferon. Cytokine Res. 2005, 25, 694–701. [Google Scholar] [CrossRef]
- Berry, M.P.; Graham, C.M.; McNab, F.W.; Xu, Z.; Bloch, S.A.; Oni, T.; Wilkinson, K.A.; Banchereau, R.; Skinner, J.; Wilkinson, R.J.; et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 2010, 466, 973–977. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, X.; Pfau, D.; Ling, Y.; Nathan, C.F. Type I interferon signaling mediates Mycobacterium tuberculosis-induced macrophage death. J. Exp. Med. 2021, 218, e20200887. [Google Scholar] [CrossRef]
- Donovan, M.L.; Schultz, T.E.; Duke, T.J.; Blumenthal, A. Type I Interferons in the Pathogenesis of Tuberculosis: Molecular Drivers and Immunological Consequences. Front Immunol. 2017, 8, 1633. [Google Scholar] [CrossRef]
- Bartlett, S.; Gemiarto, A.T.; Ngo, M.D.; Sajiir, H.; Hailu, S.; Sinha, R.; Foo, C.X.; Kleynhans, L.; Tshivhula, H.; Webber, T.; et al. GPR183 Regulates Interferons, Autophagy, and Bacterial Growth During Mycobacterium tuberculosis Infection and Is Associated With TB Disease Severity. Front Immunol. 2020, 11, 601534. [Google Scholar] [CrossRef]
- Billiau, A. Interferon-gamma: Biology and role in pathogenesis. Adv. Immunol. 1996, 62, 61–130. [Google Scholar]
- Boehm, U.; Klamp, T.; Groot, M.; Howard, J.C. Cellular responses to interferon-gamma. Annu. Rev. Immunol. 1997, 15, 749–795. [Google Scholar] [CrossRef]
- Tau, G.; Rothman, P. Biologic functions of the IFN-gamma receptors. Allergy 1999, 54, 1233–1251. [Google Scholar] [CrossRef]
- Hibino, Y.; Mariano, T.M.; Kumar, C.S.; Kozak, C.A.; Pestka, S. Expression and reconstitution of a biologically active mouse interferon gamma receptor in hamster cells. Chromosomal location of an accessory factor. J. Biol. Chem. 1991, 266, 6948–6951. [Google Scholar] [CrossRef]
- Kotenko, S.V.; Izotova, L.S.; Pollack, B.P.; Mariano, T.M.; Donnelly, R.J.; Muthukumaran, G.; Cook, J.R.; Garotta, G.; Silvennoinen, O.; Ihle, J.N.; et al. Interaction between the components of the interferon gamma receptor complex. J. Biol. Chem. 1995, 270, 20915–20921. [Google Scholar] [CrossRef]
- Flynn, J.L.; Chan, J.; Triebold, K.J.; Dalton, D.K.; Stewart, T.A.; Bloom, B.R. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 1993, 178, 2249–2254. [Google Scholar] [CrossRef]
- Khan, T.A.; Mazhar, H.; Saleha, S.; Tipu, H.N.; Muhammad, N.; Abbas, M.N. Interferon-Gamma Improves Macrophages Function against M. tuberculosis in Multidrug-Resistant Tuberculosis Patients. Chemother. Res. Pract. 2016, 2016, 7295390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, H.; Barlow, A.T.; Young, H.A.; Valencia, J.C. Interferon γ: An Overview of Its Functions in Health and Disease. Encycl. Immunobiol. 2016, 2, 494–500. [Google Scholar]
- Huaman, M.A.; Henson, D.; Rondan, P.L.; Ticona, E.; Miranda, G.; Kryscio, R.J.; Mugruza, R.; Aranda, E.; Ticona, C.; Abarca, S.; et al. Latent tuberculosis infection is associated with increased unstimulated levels of interferon-gamma in Lima, Peru. PLoS ONE 2018, 13, e0202191. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Xiang, G.; Jiang, D.; Liu, L.; Liu, F.; Luo, F.; Pu, X. An electrochemical aptasensor for detection of IFN-γ using graphene and a dual signal amplification strategy based on the exonuclease-mediated surface-initiated enzymatic polymerization. Analyst 2015, 140, 7784–7791. [Google Scholar] [CrossRef]
- Joshi, H.; Kandari, D.; Maitra, S.S.; Bhatnagar, R. Biosensors for the detection of Mycobacterium tuberculosis: A comprehensive overview. Crit. Rev. Microbiol. 2022, 1–29. [Google Scholar] [CrossRef]
- Tombelli, S.; Minunni, M.; Mascini, M. Aptamers-based assays for diagnostics, environmental and food analysis. Biomol. Eng. 2007, 24, 191–200. [Google Scholar] [CrossRef]
- Dorman, S.E.; Holland, S.M. Mutation in the signal-transducing chain of the interferon-gamma receptor and susceptibility to mycobacterial infection. J. Clin. Investig. 1998, 101, 2364–2369. [Google Scholar] [CrossRef]
- Herbst, S.; Schaible, U.E.; Schneider, B.E. Interferon gamma activated macrophages kill mycobacteria by nitric oxide induced apoptosis. PLoS ONE 2011, 6, e19105. [Google Scholar] [CrossRef]
- Zhang, B.; Xiao, L.; Qiu, Q.; Miao, L.; Yan, S.; Zhou, S. Association between IL-18, IFN-γ and TB susceptibility: A systematic review and meta-analysis. Ann. Palliat Med. 2021, 10, 10878–10886. [Google Scholar] [CrossRef]
- Gutierrez, M.J.; Kalra, N.; Horwitz, A.; Nino, G. Novel Mutation of Interferon-γ Receptor 1 Gene Presenting as Early Life Mycobacterial Bronchial Disease. J. Investig. Med. High Impact Case Rep. 2016, 4, 2324709616675463. [Google Scholar] [CrossRef]
- Bustamante, J.; Boisson-Dupuis, S.; Abel, L.; Casanova, J.L. Mendelian susceptibility to mycobacterial disease: Genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin Immunol. 2014, 26, 454–470. [Google Scholar] [CrossRef]
- Bustamante, J. Mendelian susceptibility to mycobacterial disease: Recent discoveries. Hum. Genet 2020, 139, 993–1000. [Google Scholar] [CrossRef]
- Zhou, J.H.; Wang, Y.N.; Chang, Q.Y.; Ma, P.; Hu, Y.; Cao, X. Type III Interferons in Viral Infection and Antiviral Immunity. Cell Physiol. Biochem. 2018, 51, 173–185. [Google Scholar] [CrossRef]
- Kotenko, S.V.; Gallagher, G.; Baurin, V.V.; Lewis-Antes, A.; Shen, M.; Shah, N.K.; Langer, J.A.; Sheikh, F.; Dickensheets, H.; Donnelly, R.P. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat. Immunol. 2003, 4, 69–77. [Google Scholar] [CrossRef]
- Sheppard, P.; Kindsvogel, W.; Xu, W.; Henderson, K.; Schlutsmeyer, S.; Whitmore, T.E.; Kuestner, R.; Garrigues, U.; Birks, C.; Roraback, J.; et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat. Immunol. 2003, 4, 63–68. [Google Scholar] [CrossRef]
- Travar, M.; Vucic, M.; Petkovic, M. Interferon lambda-2 levels in sputum of patients with pulmonary Mycobacterium tuberculosis infection. Scand J. Immunol. 2014, 80, 43–49. [Google Scholar] [CrossRef]
- Gad, H.H.; Dellgren, C.; Hamming, O.J.; Vends, S.; Paludan, S.R.; Hartmann, R. Interferon-lambda is functionally an interferon but structurally related to the interleukin-10 family. J. Biol. Chem. 2009, 284, 20869–20875. [Google Scholar] [CrossRef]
- Miknis, Z.J.; Magracheva, E.; Li, W.; Zdanov, A.; Kotenko, S.V.; Wlodawer, A. Crystal structure of human interferon-λ1 in complex with its high-affinity receptor interferon-λR1. J. Mol. Biol. 2010, 404, 650–664. [Google Scholar] [CrossRef]
- Marcello, T.; Grakoui, A.; Barba-Spaeth, G.; Machlin, E.S.; Kotenko, S.V.; MacDonald, M.R.; Rice, C.M. Interferons alpha and lambda inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. Gastroenterology 2006, 131, 1887–1898. [Google Scholar] [CrossRef]
- Li, M.; Liu, X.; Zhou, Y.; Su, S.B. Interferon-lambdas: The modulators of antivirus, antitumor, and immune responses. J. Leukoc. Biol. 2009, 86, 23–32. [Google Scholar] [CrossRef]
- Jordan, W.J.; Eskdale, J.; Srinivas, S.; Pekarek, V.; Kelner, D.; Rodia, M.; Gallagher, G. Human interferon lambda-1 (IFN-lambda1/IL-29) modulates the Th1/Th2 response. Genes Immun. 2007, 8, 254–261. [Google Scholar] [CrossRef]
- Siebler, J.; Wirtz, S.; Weigmann, B.; Atreya, I.; Schmitt, E.; Kreft, A.; Galle, P.R.; Neurath, M.F. IL-28A is a key regulator of T-cell-mediated liver injury via the T-box transcription factor T-bet. Gastroenterology 2007, 132, 358–371. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shanmuganathan, G.; Orujyan, D.; Narinyan, W.; Poladian, N.; Dhama, S.; Parthasarathy, A.; Ha, A.; Tran, D.; Velpuri, P.; Nguyen, K.H.; et al. Role of Interferons in Mycobacterium tuberculosis Infection. Clin. Pract. 2022, 12, 788-796. https://doi.org/10.3390/clinpract12050082
Shanmuganathan G, Orujyan D, Narinyan W, Poladian N, Dhama S, Parthasarathy A, Ha A, Tran D, Velpuri P, Nguyen KH, et al. Role of Interferons in Mycobacterium tuberculosis Infection. Clinics and Practice. 2022; 12(5):788-796. https://doi.org/10.3390/clinpract12050082
Chicago/Turabian StyleShanmuganathan, Gaithrri, Davit Orujyan, William Narinyan, Nicole Poladian, Sanya Dhama, Arpitha Parthasarathy, Alexandra Ha, Daniel Tran, Prathosh Velpuri, Kevin H. Nguyen, and et al. 2022. "Role of Interferons in Mycobacterium tuberculosis Infection" Clinics and Practice 12, no. 5: 788-796. https://doi.org/10.3390/clinpract12050082