Transcutaneous Spinal Stimulation Combined with Locomotor Training Improves Functional Outcomes in a Child with Cerebral Palsy: A Case Study
<p>P1 in the body-weight support treadmill environment with TSS. Electrode placement (yellow): two pairs of electrodes were used, with one of each pair (one-inch round electrodes) placed over the T11 and L1 spinous processes and the other (2- × 3-inch oval electrodes) over each anterior superior iliac crest. Then, the pelvic and thoracic harnesses were applied.</p> "> Figure 2
<p>Improvements in GMFM category scores. GMFM scores for categories C, D, E, and total score for each time point: Pre-AB-LT = prior to activities-based locomotor training, post-AB-LT = following AB-LT training, post-AB-LT + TSS = following AB-LT with transcutaneous spinal stimulation.</p> "> Figure 3
<p>Improvements in spatiotemporal gait parameters. Panels A and F give values for (<b>A</b>) percentage of time in stance, (<b>B</b>) percentage of time in swing, (<b>C</b>) stride width, (<b>D</b>) stride length, (<b>E</b>) Gait speed, and (<b>F</b>) cadence, before AB-LT (pre AB-LT), after AB_LT (post AB-LT), and after AB-LT with TSS (post AB-LT + TSS). L and R = left and right, respectively.</p> ">
Abstract
:1. Introduction
2. Methods
2.1. Case Description
2.2. Study Design
2.3. Activities-Based Locomotor Training
2.4. Transcutaneous Spinal Stimulation
2.5. Assessments
2.5.1. Pediatric Balance Scale
2.5.2. Ten Meter Walk Test
2.5.3. Zeno Walkway®
2.5.4. GMFM—88
3. Results
3.1. Clinical Presentation
3.2. Initial Assessment
3.3. Activities-Based Locomotor Training Without TSS
3.4. Post AB-LT Assessment
3.5. Activities-Based Locomotor Training with TSS
3.6. Post AB-LT + TSS Assessment
4. Discussion
4.1. Improvements in Functional Movements and Balance
4.2. Improvements in Gait
4.3. GMFCS Classification
4.4. Mechanisms of Transcutaneous Spinal Stimulation (TSS)
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sadowska, M.; Sarecka-Hujar, B.; Kopyta, I. Cerebral Palsy: Current Opinions on Definition, Epidemiology, Risk Factors, Classification and Treatment Options. Neuropsychiatr. Dis. Treat. 2020, 16, 1505–1518. [Google Scholar] [CrossRef] [PubMed]
- United Cerebral Palsy Association. Types of Cerebral Palsy. Available online: https://www.cerebralpalsyguidance.com/cerebral-palsy/types/ (accessed on 21 August 2024).
- Centers for Disease Control and Prevention. Data and Statistics for Cerebral Palsy. Available online: https://archive.cdc.gov/www_cdc_gov/ncbddd/cp/data.html (accessed on 12 August 2024).
- Patel, D.R.; Neelakantan, M.; Pandher, K.; Merrick, J. Cerebral palsy in children: A clinical overview. Transl. Pediatr. 2020, 9 (Suppl. S1), S125. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Health. Cerebral Palsy. Available online: https://www.ninds.nih.gov/health-information/disorders/cerebral-palsy (accessed on 21 August 2024).
- Joshua, A.M. Physiotherapy for Adult Neurological Conditions; Springer: Singapore, 2022; pp. 1–30. [Google Scholar]
- Phillips, J.P. Neuroimaging in cerebral palsy: A clearer vision of neuroplasticity. Neuropediatrics 2007, 38, 112–113. [Google Scholar] [CrossRef] [PubMed]
- Damiano, D.L.; Pekar, J.J.; Mori, S.; Faria, A.V.; Ye, X.; Stashinko, E.; Stanley, C.J.; Alter, K.E.; Hoon, A.H.; Chin, E.M. Functional and structural brain connectivity in children with bilateral cerebral palsy compared to age-related controls and in response to intensive rapid-reciprocal leg training. Front. Rehabil. Sci. 2022, 3, 811509. [Google Scholar] [CrossRef]
- Gerasimenko, Y.; Gorodnichev, R.; Moshonkina, T.; Sayenko, D.; Gad, P.; Edgerton, V.R. Transcutaneous electrical spinal-cord stimulation in humans. Ann. Phys. Rehabil. 2015, 58, 225–231. [Google Scholar] [CrossRef]
- Sayenko, D.G.; Rath, M.; Ferguson, A.R.; Burdick, J.W.; Havton, L.A.; Edgerton, V.R.; Gerasimenko, Y.P. Self-assisted standing enabled by non-invasive spinal stimulation after spinal cord injury. J. Neurotrauma 2019, 36, 1435–1450. [Google Scholar] [CrossRef]
- Minassian, K.; Persy, I.; Rattay, F.; Dimitrijevic, M.R.; Hofer, C.; Kern, H. Posterior root-muscle reflexes elicited by transcutaneous stimulation of the human lumbosacral cord. Muscle Nerve 2007, 35, 327–336. [Google Scholar] [CrossRef]
- Hofstoetter, U.S.; Freundl, B.; Binder, H.; Minassian, K. Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: Elicitation of posterior root-muscle reflexes. PLoS ONE 2018, 13, e0192013. [Google Scholar] [CrossRef]
- Taccola, G.; Sayenko, D.G.; Gad, P.; Gerasimenko, Y.; Edgerton, V.R. And yet it moves: Recovery of volitional control after spinal cord injury. Prog. Neurobiol. 2018, 160, 64–81. [Google Scholar] [CrossRef]
- Hofstoetter, U.S.; Minassian, K. Transcutaneous spinal cord stimulation: Advances in an emerging non-invasive strategy for neuromodulation. J. Clin. Med. 2022, 11, 3836. [Google Scholar] [CrossRef]
- Singh, G.; Sharma, P.; Forrest, G.; Harkema, S.; Behrman, A.; Gerasimenko, Y. Spinal cord transcutaneous stimulation in cervical spinal cord injury: A review examining upper extremity neuromotor control, recovery mechanisms, and future directions. J. Neurotrauma 2024, 41, 2056–2074. [Google Scholar] [CrossRef] [PubMed]
- Hofstoetter, U.S.; Krenn, M.; Danner, S.M.; Hofer, C.; Kern, H.; McKay, W.B.; Mayr, W.; Minassian, K. Augmentation of voluntary locomotor activity by transcutaneous spinal cord stimulation in motor-incomplete spinal cord-injured individuals. Artif. Organs 2015, 39, E176–E186. [Google Scholar] [CrossRef] [PubMed]
- Gerasimenko, Y.P.; Lu, D.C.; Modaber, M.; Zdunowski, S.; Gad, P.; Sayenko, D.G.; Morikawa, E.; Haakana, P.; Ferguson, A.R.; Roy, R.R.; et al. Noninvasive reactivation of motor descending control after paralysis. J. Neurotrauma 2015, 32, 1968–1980. [Google Scholar] [CrossRef] [PubMed]
- Roberts, B.W.R.; Atkinson, D.A.; Manson, G.A.; Markley, R.; Kaldis, T.; Britz, G.W.; Horner, P.J.; Vette, A.H.; Sayenko, D.G. Transcutaneous spinal cord stimulation improves postural stability in individuals with multiple sclerosis. Mult. Scler. Relat. Disord. 2021, 52, 103009. [Google Scholar] [CrossRef]
- Gad, P.; Hastings, S.; Zhong, H.; Seth, G.; Kandhari, S.; Edgerton, V.R. Transcutaneous Spinal Neuromodulation Reorganizes Neural Networks in Patients with Cerebral Palsy. Neurotherapeutics 2021, 18, 1953–1962. [Google Scholar] [CrossRef]
- Kreydin, E.; Zhong, H.; Latack, K.R.; Ye, S.; Edgerton, V.R.; Gad, P. Transcutaneous electrical spinal cord neuromodulator (TESCoN) improves symptoms of neurogenic bladder after stroke and spinal cord injury. Front. Syst. Neurosci. 2020, 14, 1. [Google Scholar] [CrossRef]
- Phillips, A.A.; Squair, J.W.; Sayenko, D.G.; Edgerton, V.R.; Gerasimenko, Y.; Krassioukov, A.V. An Autonomic Neuroprosthesis: Noninvasive Electrical Spinal Cord Stimulation Restores Autonomic Cardiovascular Function in Individuals with Spinal Cord Injury. J. Neurotrauma 2018, 35, 446–451. [Google Scholar] [CrossRef]
- Behrman, A.L.; Ardolino, E.M.; Harkema, S.J. Activity-Based Therapy: From Basic Science to Clinical Application for Recovery After Spinal Cord Injury. J. Neurol. Phys. Ther. 2017, 41 (Suppl. S3), S39–S45. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, C.L.; Shen, I.H.; Chen, C.Y.; Wu, C.Y.; Liu, W.Y.; Chung, C.Y. Validity, responsiveness, minimal detectable change, and minimal clinically important change of Pediatric Balance Scale in children with cerebral palsy. Res. Dev. Disabil. 2013, 34, 916–922. [Google Scholar] [CrossRef]
- Tyson, S.; Connell, L. The psychometric properties and clinical utility of measures of walking and mobility in neurological conditions: A systematic review. Clin. Rehabil. 2009, 23, 1018–1033. [Google Scholar] [CrossRef]
- Pirpiris, M.; Wilkinson, A.J.; Rodda, J.; Nguyen, T.C.; Baker, R.J.; Nattrass, G.R.; Graham, H.K. Walking speed in children and young adults with neuromuscular disease: Comparison between two assessment methods. J. Pediatr. Orthop. 2003, 23, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Nelson, A.J.; Zwick, K.; Brody, S.; Doran, C.; Pulver, L.; Rooz, G.; Sadownick, M.; Nelson, R.; Rothman, J. The validity of the GaitRite and the functional ambulation performance scoring system in the analysis of Parkinson gait. NeuroRehabilitation 2002, 17, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Sorsdahl, A.B.; Moe-Nilssen, R.; Strand, L.I. Test–retest reliability of spatial and temporal gait parameters in children with cerebral palsy as measured by an electronic walkway. Gait Posture 2008, 27, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Russel, D.J.; Wright, M.; Rosenbaum, P.L.; Avery, L.M. Gross Motor Function Measure (GMFM-66 & GMFM-88) User’s Manual, 3rd ed.; Mac Keith Press: London, UK, 2021. [Google Scholar]
- Pool, D.; Elliott, C.; Willis, C.; Thornton, A. The experience of locomotor training from the perspectives of therapists and parents of children with cerebral palsy. Front. Rehabil. Sci. 2021, 2, 740426. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smania, N.; Bonetti, P.; Gandolfi, M.; Cosentino, A.; Waldner, A.; Hesse, S.; Werner, C.; Bisoffi, G.; Geroin, C.; Munari, D. Improved gait after repetitive locomotor training in children with cerebral palsy. Am. J. Phys. Med. Rehabil. 2011, 90, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Mattern-Baxter, K.; Bellamy, S.; Mansoor, J.K. Effects of intensive locomotor treadmill training on young children with cerebral palsy. Pediatr. Phys. Ther. 2009, 21, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Flores, M.B.; da Silva, C.P. Trunk control and gross motor outcomes after body weight supported treadmill training in young children with severe cerebral palsy: A non-experimental case series. Dev. Neurorehabil. 2018, 22, 499–503. [Google Scholar] [CrossRef]
- Hastings, S.; Zhong, H.; Feinstein, R.; Zelczer, G.; Mitrovich, C.; Gad, P.; Edgerton, V.R. A pilot study combining noninvasive spinal neuromodulation and activity-based neurorehabilitation therapy in children with cerebral palsy. Nat. Commun. 2022, 13, 5660. [Google Scholar] [CrossRef]
- Storm, F.A.; Petrarca, M.; Beretta, E.; Strazzer, S.; Piccinini, L.; Maghini, C.; Panzeri, D.; Corbetta, C.; Morganti, R.; Reni, G.; et al. Minimum clinically important difference of gross motor function and gait endurance in children with motor impairment: A comparison of distribution-based approaches. Biomed. Res. Int. 2020, 2020, 2794036. [Google Scholar] [CrossRef]
- Mawase, F.; Bar-Haim, S.; Joubran, K.; Rubin, L.; Kamiel, A.; Shmuelof, F. Increased adaptation rates and reduction in trial-by-trial variability in subjects with cerebral palsy following a multi-session locomotor adaptation training. Front. Hum. Neurosci. 2016, 10, 203. [Google Scholar] [CrossRef]
- Palisano, R.J.; Cameron, D.; Rosenbaum, P.L.; Walter, S.D.; Russell, D. Stability of the gross motor function classification system. Dev. Med. Child. Neurol. 2006, 48, 424–428. [Google Scholar] [CrossRef] [PubMed]
- McCormick, A.; Brien, M.; Plourde, J.; Wood, E.; Rosenbaum, P.; McLean, J. Stability of the gross motor function classification system in adults with cerebral palsy. Dev. Med. Child. Neurol. 2007, 49, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Solopova, I.A.; Sukhotina, I.A.; Zhvansky, D.S.; Ikoeva, G.A.; Vissarionov, S.V.; Baindurashvili, A.G.; Edgerton, V.R.; Gerasimenko, Y.P.; Moshonkina, T.R. Effects of spinal cord stimulation on motor functions in children with cerebral palsy. Neurosci. Lett. 2017, 639, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Hofstoetter, U.S.; McKay, W.B.; Tansey, K.E.; Mayr, W.; Kern, H.; Minassian, K. Modification of spasticity by transcutaneous spinal cord stimulation in individuals with incomplete spinal cord injury. J. Spinal Cord. Med. 2014, 37, 202–211. [Google Scholar] [CrossRef]
- Hofstoetter, U.S.; Freundl, B.; Danner, S.M.; Krenn, M.J.; Mayr, W.; Binder, H.; Minassian, K. Transcutaneous spinal cord stimulation induces temporary attenuation of spasticity in individuals with spinal cord injury. J. Neurotrauma 2020, 37, 481–493. [Google Scholar] [CrossRef]
Outcome Measures | |||||||||
---|---|---|---|---|---|---|---|---|---|
PBS | 10 MWT (m/s) | GMFM (%) | |||||||
x/56 | (%) | Self Selected | Fast | C | D | E | Total Score | ||
pre AB-LT | 40.0 | 71.0 | 0.7 | 1.1 | 97.6 | 74.3 | 59.7 | 86.3 | |
post AB-LT | 42.0 | 75.0 | 0.8 | 1.1 | 100.0 | 84.6 | 55.5 | 88.0 | |
post AB-LT + TSS | 44.0 | 79.0 | 0.8 | 1.4 | 100.0 | 89.7 | 79.1 | 93.7 | |
Spatio-Temporal Gait Parameters | |||||||||
Stride Width | Stance (%) | Swing (%) | Stride Length | Velocity | Cadence | ||||
(cm) | L | R | L | R | cm | (cm/s) | (Steps/min) | ||
self selected | pre AB-LT | 6.2 ± 22.1 | 68.2 ± 9.8 | 68.0 ± 6.5 | 31.9 ± 9.8 | 32.0 ± 6.5 | 76.4 ± 18.4 | 70.2 | 114.0 |
post AB-LT | 6.9 ± 21.2 | 68.1 ± 3.7 | 67.8 ± 4.6 | 31.9 ± 3.7 | 32.2 ± 4.6 | 84.7 ± 9.6 | 72.4 | 103.0 | |
post AB-LT + TSS | 21.5 ± 4.2 | 63.6 ± 3.8 | 71.0 ± 2.2 | 36.5 ± 3.8 | 29.0 ± 2.2 | 89.3 ± 7.9 | 76.7 | 103.9 | |
fast | pre AB-LT | 24.1 ± 4.2 | 61.5 ± 2.4 | 67.3 ± 1.4 | 38.5 ± 2.4 | 32.7 ± 1.4 | 102.0 ± 8.2 | 106.7 | 126.2 |
post AB-LT | 21.4 ± 2.9 | 63.0 ± 2.3 | 67.2 ± 2.1 | 37.0 ± 2.3 | 32.8 ± 2.1 | 102.7 ± 5.0 | 101.4 | 117.2 | |
post AB-LT + TSS | 27.0 ± 3.3 | 55.3 ± 6.2 | 58.6 ± 4.71 | 44.7 ± 6.2 | 41.4 ± 4.7 | 113.7 ± 8.6 | 150.1 | 160.9 |
BWSTT Session Data | ||||||||
---|---|---|---|---|---|---|---|---|
Total TM Time | Avg. BWS | Total SR Time | SR Speed | Total SA Time | SA Speed | Total STA Time | Avg. Total Step Time | |
(min) | % | (min) | (mph) | (min) | (mph) | (min) | (min) | |
AB-LT | 52.97 | 35.53 | 15.22 | 1.2–1.8 | 11.64 | 1.2–1.5 | 25.22 | 26.86 |
AB-LT + TSS | 56.70 | 28.25 | 20.13 | 1.6–2 | 12.75 | 1.4–1.8 | 22.23 | 32.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atkinson, D.; Barta, K.; Bizama, F.; Anderson, H.; Brose, S.; Sayenko, D.G. Transcutaneous Spinal Stimulation Combined with Locomotor Training Improves Functional Outcomes in a Child with Cerebral Palsy: A Case Study. Children 2024, 11, 1439. https://doi.org/10.3390/children11121439
Atkinson D, Barta K, Bizama F, Anderson H, Brose S, Sayenko DG. Transcutaneous Spinal Stimulation Combined with Locomotor Training Improves Functional Outcomes in a Child with Cerebral Palsy: A Case Study. Children. 2024; 11(12):1439. https://doi.org/10.3390/children11121439
Chicago/Turabian StyleAtkinson, Darryn, Kristen Barta, Fabian Bizama, Hazel Anderson, Sheila Brose, and Dimitry G Sayenko. 2024. "Transcutaneous Spinal Stimulation Combined with Locomotor Training Improves Functional Outcomes in a Child with Cerebral Palsy: A Case Study" Children 11, no. 12: 1439. https://doi.org/10.3390/children11121439
APA StyleAtkinson, D., Barta, K., Bizama, F., Anderson, H., Brose, S., & Sayenko, D. G. (2024). Transcutaneous Spinal Stimulation Combined with Locomotor Training Improves Functional Outcomes in a Child with Cerebral Palsy: A Case Study. Children, 11(12), 1439. https://doi.org/10.3390/children11121439