A Novel Class of FKBP12 Ligands Rescues Premature Aging Phenotypes Associated with Myotonic Dystrophy Type 1
<p>MP compounds restore DM1 cell viability and redox homeostasis. (<b>A</b>–<b>C</b>) Cell viability, intracellular calcium measurement, and ROS levels in fibroblasts derived from DM1 patients and controls. Values in DM1 are relative to controls. Dots represent mean values from control and patient individuals. Delineated dots in B represent average values from at least 30 cells, represented as non-delineated dots. (<b>D</b>) Cell viability of DM1 fibroblasts after treatment with 0.1 µM of indicated MP compounds for 72 h (n = 3, different individuals). (<b>E</b>,<b>F</b>) Cell viability of control and DM1 fibroblasts after treatment with 0.1, 1, and 10 µM of MP-001 and MP-002 for 72 h (n = 3). (<b>G</b>) Intracellular calcium measurement in same conditions as ((<b>E</b>); n = 3). (<b>H</b>) ROS levels in fibroblasts derived from DM1 patients and controls after treatment with 0.1 µM of MP-001 and MP-002 for 72 h (n = 3). <span class="html-italic"><sup>≠</sup> p</span> < 0.1, * <span class="html-italic">p</span> < 0.05, and ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 2
<p>MP compounds restore DM1 cell proliferation and metabolism. (<b>A</b>) Quantification of the number of P-H3-positive cells in independent control and DM1 fibroblasts (n > 3) after treatment with 0.1 µM of MP-001 and MP-002 for 72 h. (<b>B</b>) mRNA levels of <span class="html-italic">p16<sup>INK4A</sup></span>, <span class="html-italic">p21<sup>CIP1</sup>,</span> and <span class="html-italic">p14<sup>ARF</sup></span> in control and DM1 fibroblasts (n ≥ 3), (<b>C</b>) and after treatment with 0.1 µM of MPs for 72 h. (<b>D</b>–<b>F</b>) Quantification of basal, maximal respiration, and ATP production in controls and DM1 (n > 3) fibroblasts after 0.1 µM MP compound treatment. (<b>G</b>) Kinetic normalized OCR response in DM1 fibroblasts in the absence or presence of 0.1 µM of MP-001 and MP-002. <span class="html-italic"><sup>≠</sup> p</span> < 0.1, * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 3
<p>MP-002 rescues molecular alterations in DM1 fibroblasts. (<b>A</b>,<b>B</b>) mRNA levels of indicated genes in control and DM1 fibroblasts (n = 3). (<b>C</b>,<b>D</b>) Bar plot of the -log10 (p-value) of the significantly upregulated and downregulated GO terms in DM1 fibroblasts treated with MP-002 (n = 3). <span class="html-italic"><sup>≠</sup> p</span> < 0.1, and * <span class="html-italic">p</span> < 0.05.</p> "> Figure 4
<p>MP-002 rescues splicing events. (<b>A</b>) Quantity of splicing events in each dPSI. (<b>B</b>) Quantity of types of splicing events in each comparison. (<b>C</b>) Venn diagram of common genes in each comparison. (<b>D</b>) Change in direction of the splicing events affected by the treatment. (<b>E</b>) Point plot of the top 10 recovered genes. (<b>F</b>) Bar plot of the -log10 (p-value) of the significantly altered GO terms from genes with aberrant splicing events in DM1 fibroblasts treated with MP-002 (n = 3). (<b>G</b>,<b>H</b>) Quantification of splicing in <span class="html-italic">BIN</span>, <span class="html-italic">MLF1</span>, and <span class="html-italic">MBNL1</span> in control and DM fibroblasts and restoration after MP treatment (n = 3). <span class="html-italic"><sup>≠</sup> p</span> < 0.1, * <span class="html-italic">p</span> < 0.05, and *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 5
<p>MP-002 restores molecular and functional defects in DM1 <span class="html-italic">Drosophila melanogaster</span>. (<b>A</b>–<b>D</b>) mRNA levels of indicated genes in the thorax of DM1 and control fruit flies (n = 3, each point represents a pool of six flies). (<b>E</b>–<b>H</b>) mRNA levels of indicated genes from the thorax of DM1 fruit flies in the presence of 10 and 100 µM of MP (n = 3, each datapoint comes from a pool of six flies). (<b>I</b>) Locomotor activity of non-treated DM1 (n = 50) flies or in the presence of 10 and 100 µM of MP (n = 50) at the indicated time points. Student <span class="html-italic">t</span>-test values are at 20 days <span class="html-italic">p</span> = 0.02 and <span class="html-italic">p</span> = 0.002, and at 25 days <span class="html-italic">p</span> <0.0001 compared to non-treated flies. <span class="html-italic"><sup>≠</sup> p</span> < 0.1, * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001.</p> "> Figure 6
<p>MP-002 extends lifespan in DM1 <span class="html-italic">Drosophila melanogaster</span>. (<b>A</b>,<b>B</b>) Survival curves of control (<span class="html-italic">wt</span>), non-treated DM1 (DM1 -), and DM1 flies in the presence of 10 µM (DM1 MP2 10) and 100 µM (DM1 MP2 100) of MP-002 treated since larval stage divided by sexes; male (<b>A</b>), female (<b>B</b>), (n = 100). LogRank values are <span class="html-italic">p</span> < 0.0001 for both sexes compared to non-treated flies. (<b>C</b>,<b>D</b>) Survival curves of control flies, DM1 flies non-treated, and DM1 flies in the presence of 10 and 100 µM of MP-002 treated since adulthood divided by sexes; male (<b>C</b>), female (<b>D</b>), (n = 100). LogRank values are <span class="html-italic">p</span> < 0.0001 for both sexes. (<b>E</b>) Survival curve of control flies, non-treated, or in the presence of 10 µM of MP-002 treated since adulthood (n = 50). LogRank value is <span class="html-italic">p</span> < 0.05.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Compounds
2.2. Cell Culture
2.3. Measurement of Cell Growth and Viability and Cell Proliferation
2.4. Total ROS Measurement
2.5. Metabolic Measurements
2.6. RNA-Seq Study
2.7. mRNA Expression Analysis
2.8. Transgenic Drosophila Melanogaster
2.9. Statistics
3. Results
3.1. MP Compounds Restore Cell Growth and ROS Levels in DM1 Primary Fibroblasts
3.2. MP Compounds Normalize Premature Aging Phenotypes in DM1 Primary Fibroblasts
3.3. Transcriptomic Analysis Reveals That MP-002 Normalizes Altered Molecular Pathways in DM1 Primary Fibroblasts
3.4. Transcriptomic Analysis Reveals That MP-002 Normalizes Altered Molecular Pathways and Splicing Defects in DM1 Primary Fibroblasts
3.5. MP-002 Rescues Critical Phenotypes in a Drosophila Model of DM1 Disease
3.6. MP Compounds Rescue Reduced Longevity in a Drosophila Model of DM1 Disease
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Harper, P.S. Myotonic Dystrophy—The Facts: A Book for Patients and Families; Oxford University Press: Oxford, UK; New York, NY, USA, 2002; 113p. [Google Scholar]
- Liquori, C.L.; Ricker, K.; Moseley, M.L.; Jacobsen, J.F.; Kress, W.; Naylor, S.L.; Day, J.W.; Ranum, L.P. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 2001, 293, 864–867. [Google Scholar] [CrossRef] [PubMed]
- Theadom, A.; Rodrigues, M.; Roxburgh, R.; Balalla, S.; Higgins, C.; Bhattacharjee, R.; Jones, K.; Krishnamurthi, R.; Feigin, V. Prevalence of muscular dystrophies: A systematic literature review. Neuroepidemiology 2014, 43, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.W.; Urbinati, C.R.; Teng-Umnuay, P.; Stenberg, M.G.; Byrne, B.J.; Thornton, C.A.; Swanson, M.S. Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J. 2000, 19, 4439–4448. [Google Scholar] [CrossRef] [PubMed]
- Udd, B.; Krahe, R. The myotonic dystrophies: Molecular, clinical, and therapeutic challenges. Lancet Neurol. 2012, 11, 891–905. [Google Scholar] [CrossRef]
- Meola, G.; Cardani, R. Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim. Biophys. Acta 2015, 1852, 594–606. [Google Scholar] [CrossRef]
- Mikhail, A.I.; Nagy, P.L.; Manta, K.; Rouse, N.; Manta, A.; Ng, S.Y.; Nagy, M.F.; Smith, P.; Lu, J.Q.; Nederveen, J.P.; et al. Aerobic exercise elicits clinical adaptations in myotonic dystrophy type 1 patients independently of pathophysiological changes. J. Clin. Investig. 2022, 132, e156125. [Google Scholar] [CrossRef]
- Martorell, L.; Monckton, D.G.; Gamez, J.; Johnson, K.J.; Gich, I.; de Munain, A.L.; Baiget, M. Progression of somatic CTG repeat length heterogeneity in the blood cells of myotonic dystrophy patients. Hum. Mol. Genet. 1998, 7, 307–312. [Google Scholar] [CrossRef]
- Mateos-Aierdi, A.J.; Goicoechea, M.; Aiastui, A.; Fernandez-Torron, R.; Garcia-Puga, M.; Matheu, A.; de Munain, A.L. Muscle wasting in myotonic dystrophies: A model of premature aging. Front. Aging Neurosci. 2015, 7, 125. [Google Scholar] [CrossRef]
- Meinke, P.; Hintze, S.; Limmer, S.; Schoser, B. Myotonic Dystrophy—A Progeroid Disease? Front. Neurol. 2018, 9, 601. [Google Scholar] [CrossRef]
- Renna, L.V.; Cardani, R.; Botta, A.; Rossi, G.; Fossati, B.; Costa, E.; Meola, G. Premature senescence in primary muscle cultures of myotonic dystrophy type 2 is not associated with p16 induction. Eur. J. Histochem. 2014, 58, 2444. [Google Scholar] [CrossRef]
- Hasuike, Y.; Mochizuki, H.; Nakamori, M. Expanded CUG Repeat RNA Induces Premature Senescence in Myotonic Dystrophy Model Cells. Front. Genet. 2022, 13, 865811. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Puga, M.; Saenz-Antonanzas, A.; Gerenu, G.; Arrieta-Legorburu, A.; Fernandez-Torron, R.; Zulaica, M.; Saenz, A.; Elizazu, J.; Nogales-Gadea, G.; Gadalla, S.M.; et al. Senescence plays a role in myotonic dystrophy type 1. JCI Insight 2022, 7, e159357. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Puga, M.; Saenz-Antonanzas, A.; Fernandez-Torron, R.; Munain, A.L.; Matheu, A. Myotonic Dystrophy type 1 cells display impaired metabolism and mitochondrial dysfunction that are reversed by metformin. Aging 2020, 12, 6260–6275. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Best, A.; Fernandez-Torron, R.; Alsaggaf, R.; Garcia-Puga, M.; Dagnall, C.L.; Hicks, B.; Thompson, M.; Fernandez, A.M.; Ijurco, M.Z.; et al. Leukocyte telomere length in patients with myotonic dystrophy type I: A pilot study. Ann. Clin. Transl. Neurol. 2020, 7, 126–131. [Google Scholar] [CrossRef]
- Bargiela, A.; Sabater-Arcis, M.; Espinosa-Espinosa, J.; Zulaica, M.; de Munain, A.L.; Artero, R. Increased Muscleblind levels by chloroquine treatment improve myotonic dystrophy type 1 phenotypes in in vitro and in vivo models. Proc. Natl. Acad. Sci. USA 2019, 116, 25203–25213. [Google Scholar] [CrossRef]
- Lopez-Otin, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of aging: An expanding universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef]
- Gutierrez Gutierrez, G.; Diaz-Manera, J.; Almendrote, M.; Azriel, S.; Barcena, J.E.; Garcia, P.C.; Salas, A.C.; Rodriguez, C.C.; Cobo, A.M.; Guardiola, P.D.; et al. Clinical guide for the diagnosis and follow-up of myotonic dystrophy type 1, MD1 or Steinert’s disease. Med. Clin. 2019, 153, 82.e1–82.e17. [Google Scholar] [CrossRef]
- Thornton, C.A.; Wang, E.; Carrell, E.M. Myotonic dystrophy: Approach to therapy. Curr. Opin. Genet. Dev. 2017, 44, 135–140. [Google Scholar] [CrossRef]
- Pascual-Gilabert, M.; Lopez-Castel, A.; Artero, R. Myotonic dystrophy type 1 drug development: A pipeline toward the market. Drug Discov. Today 2021, 26, 1765–1772. [Google Scholar] [CrossRef]
- Passannante, R.; Gómez-Vallejo, V.; Sagartzazu-Aizpurua, M.; Vignau Arsuaga, L.; Marco-Moreno, P.; Aldanondo, G.; Vallejo-Illarramendi, A.; Aguiar, P.; Cossío, U.; Martín, A.; et al. Pharmacokinetic Evaluation of New Drugs Using a Multi-Labelling Approach and PET Imaging: Application to a Drug Candidate with Potential Application in Neuromuscular Disorders. Biomedicines 2023, 11, 253. [Google Scholar] [CrossRef]
- Kim, G.H.; Kim, J.E.; Rhie, S.J.; Yoon, S. The Role of Oxidative Stress in Neurodegenerative Diseases. Exp. Neurobiol. 2015, 24, 325–340. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhou, T.; Ziegler, A.C.; Dimitrion, P.; Zuo, L. Oxidative Stress in Neurodegenerative Diseases: From Molecular Mechanisms to Clinical Applications. Oxid. Med. Cell. Longev. 2017, 2017, 2525967. [Google Scholar] [CrossRef] [PubMed]
- Vallejo-Illarramendi, A.; Toral-Ojeda, I.; Aldanondo, G.; de Munain, A.L. Dysregulation of calcium homeostasis in muscular dystrophies. Expert Rev. Mol. Med. 2014, 16, e16. [Google Scholar] [CrossRef] [PubMed]
- Moulin, M.; Ferreiro, A. Muscle redox disturbances and oxidative stress as pathomechanisms and therapeutic targets in early-onset myopathies. Semin. Cell Dev. Biol. 2017, 64, 213–223. [Google Scholar] [CrossRef] [PubMed]
- La Rosa, P.; Petrillo, S.; Bertini, E.S.; Piemonte, F. Oxidative Stress in DNA Repeat Expansion Disorders: A Focus on NRF2 Signaling Involvement. Biomolecules 2020, 10, 702. [Google Scholar] [CrossRef]
- Jacobs, A.E.; Benders, A.A.; Oosterhof, A.; Veerkamp, J.H.; van Mier, P.; Wevers, R.A.; Joosten, E.M. The calcium homeostasis and the membrane potential of cultured muscle cells from patients with myotonic dystrophy. Biochim. Biophys. Acta 1990, 1096, 14–19. [Google Scholar] [CrossRef]
- Hlaing, P.M.; Scott, I.A.; Jackson, R.V. Dysregulation of calcium metabolism in type 1 myotonic dystrophy. Intern. Med. J. 2019, 49, 1412–1417. [Google Scholar] [CrossRef]
- Tang, Z.Z.; Yarotskyy, V.; Wei, L.; Sobczak, K.; Nakamori, M.; Eichinger, K.; Moxley, R.T.; Dirksen, R.T.; Thornton, C.A. Muscle weakness in myotonic dystrophy associated with misregulated splicing and altered gating of Ca(V)1.1 calcium channel. Hum. Mol. Genet. 2012, 21, 1312–1324. [Google Scholar] [CrossRef]
- Kimura, T.; Nakamori, M.; Lueck, J.D.; Pouliquin, P.; Aoike, F.; Fujimura, H.; Dirksen, R.T.; Takahashi, M.P.; Dulhunty, A.F.; Sakoda, S. Altered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1. Hum. Mol. Genet. 2005, 14, 2189–2200. [Google Scholar] [CrossRef]
- Vihola, A.; Sirito, M.; Bachinski, L.L.; Raheem, O.; Screen, M.; Suominen, T.; Krahe, R.; Udd, B. Altered expression and splicing of Ca2+ metabolism genes in myotonic dystrophies DM1 and DM2. Neuropathol. Appl. Neurobiol. 2013, 39, 390–405. [Google Scholar] [CrossRef]
- Ihara, Y.; Mori, A.; Hayabara, T.; Namba, R.; Nobukuni, K.; Sato, K.; Miyata, S.; Edamatsu, R.; Liu, J.; Kawai, M. Free radicals, lipid peroxides and antioxidants in blood of patients with myotonic dystrophy. J. Neurol. 1995, 242, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kumar, V.; Singh, S.K.; Muthuswamy, S.; Agarwal, S. Imbalanced oxidant and antioxidant ratio in myotonic dystrophy type 1. Free Radic. Res. 2014, 48, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Usuki, F.; Ishiura, S. Expanded CTG repeats in myotonin protein kinase increase susceptibility to oxidative stress. Neuroreport 1998, 9, 2291–2296. [Google Scholar] [CrossRef] [PubMed]
- Usuki, F.; Takahashi, N.; Sasagawa, N.; Ishiura, S. Differential signaling pathways following oxidative stress in mutant myotonin protein kinase cDNA-transfected C2C12 cell lines. Biochem. Biophys. Res. Commun. 2000, 267, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Wehrens, X.H.; Lehnart, S.E.; Marks, A.R. Intracellular calcium release and cardiac disease. Annu. Rev. Physiol. 2005, 67, 69–98. [Google Scholar] [CrossRef]
- Zalk, R.; Clarke, O.B.; Georges, A.D.; Grassucci, R.A.; Reiken, S.; Mancia, F.; Hendrickson, W.A.; Frank, J.; Marks, A.R. Structure of a mammalian ryanodine receptor. Nature 2015, 517, 44–49. [Google Scholar] [CrossRef]
- Andersson, D.C.; Betzenhauser, M.J.; Reiken, S.; Meli, A.C.; Umanskaya, A.; Xie, W.; Shiomi, T.; Zalk, R.; Lacampagne, A.; Marks, A.R. Ryanodine receptor oxidation causes intracellular calcium leak and muscle weakness in aging. Cell Metab. 2011, 14, 196–207. [Google Scholar] [CrossRef]
- Liu, X.; Betzenhauser, M.J.; Reiken, S.; Meli, A.C.; Xie, W.; Chen, B.X.; Arancio, O.; Marks, A.R. Role of leaky neuronal ryanodine receptors in stress-induced cognitive dysfunction. Cell 2012, 150, 1055–1067. [Google Scholar] [CrossRef]
- Wehrens, X.H.; Lehnart, S.E.; Huang, F.; Vest, J.A.; Reiken, S.R.; Mohler, P.J.; Sun, J.; Guatimosim, S.; Song, L.S.; Rosemblit, N.; et al. FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell 2003, 113, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Bellinger, A.M.; Reiken, S.; Carlson, C.; Mongillo, M.; Liu, X.; Rothman, L.; Matecki, S.; Lacampagne, A.; Marks, A.R. Hypernitrosylated ryanodine receptor calcium release channels are leaky in dystrophic muscle. Nat. Med. 2009, 15, 325–330. [Google Scholar] [CrossRef]
- Capogrosso, R.F.; Mantuano, P.; Uaesoontrachoon, K.; Cozzoli, A.; Giustino, A.; Dow, T.; Srinivassane, S.; Filipovic, M.; Bell, C.; Vandermeulen, J.; et al. Ryanodine channel complex stabilizer compound S48168/ARM210 as a disease modifier in dystrophin-deficient mdx mice: Proof-of-concept study and independent validation of efficacy. FASEB J. 2018, 32, 1025–1043. [Google Scholar] [CrossRef] [PubMed]
- Brockhoff, M.; Rion, N.; Chojnowska, K.; Wiktorowicz, T.; Eickhorst, C.; Erne, B.; Frank, S.; Angelini, C.; Furling, D.; Ruegg, M.A.; et al. Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I. J. Clin. Investig. 2017, 127, 549–563. [Google Scholar] [CrossRef] [PubMed]
- Eghtesad, S.; Jhunjhunwala, S.; Little, S.R.; Clemens, P.R. Rapamycin ameliorates dystrophic phenotype in mdx mouse skeletal muscle. Mol. Med. 2011, 17, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Foltz, S.J.; Luan, J.; Call, J.A.; Patel, A.; Peissig, K.B.; Fortunato, M.J.; Beedle, A.M. Four-week rapamycin treatment improves muscular dystrophy in a fukutin-deficient mouse model of dystroglycanopathy. Skelet. Muscle 2016, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Aizpurua, J.M.; Miranda, J.I.; Irastorza, A.; Torres, E.; Eceiza, M.; Sagartzazu-Aizpurua, M.; Ferron, P.; Aldanondo, G.; Lasa-Fernandez, H.; Marco-Moreno, P.; et al. Discovery of a novel family of FKBP12 “reshapers” and their use as calcium modulators in skeletal muscle under nitro-oxidative stress. Eur. J. Med. Chem. 2021, 213, 113160. [Google Scholar] [CrossRef]
- Fernandez-Costa, J.M.; Garcia-Lopez, A.; Zuniga, S.; Fernandez-Pedrosa, V.; Felipo-Benavent, A.; Mata, M.; Jaka, O.; Aiastui, A.; Hernandez-Torres, F.; Aguado, B.; et al. Expanded CTG repeats trigger miRNA alterations in Drosophila that are conserved in myotonic dystrophy type 1 patients. Hum. Mol. Genet. 2013, 22, 704–716. [Google Scholar] [CrossRef]
- Lopez-Otin, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]
- Bigot, A.; Klein, A.F.; Gasnier, E.; Jacquemin, V.; Ravassard, P.; Butler-Browne, G.; Mouly, V.; Furling, D. Large CTG repeats trigger p16-dependent premature senescence in myotonic dystrophy type 1 muscle precursor cells. Am. J. Pathol. 2009, 174, 1435–1442. [Google Scholar] [CrossRef]
- Philips, A.V.; Timchenko, L.T.; Cooper, T.A. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 1998, 280, 737–741. [Google Scholar] [CrossRef]
- Nakamori, M.; Sobczak, K.; Puwanant, A.; Welle, S.; Eichinger, K.; Pandya, S.; Dekdebrun, J.; Heatwole, C.R.; McDermott, M.P.; Chen, T.; et al. Splicing biomarkers of disease severity in myotonic dystrophy. Ann. Neurol. 2013, 74, 862–872. [Google Scholar] [CrossRef]
- Morrow, G.; Tanguay, R.M. Drosophila melanogaster Hsp22: A mitochondrial small heat shock protein influencing the aging process. Front. Genet. 2015, 6, 1026. [Google Scholar] [CrossRef] [PubMed]
- Yum, K.; Wang, E.T.; Kalsotra, A. Myotonic dystrophy: Disease repeat range, penetrance, age of onset, and relationship between repeat size and phenotypes. Curr. Opin. Genet. Dev. 2017, 44, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Connell, P.; Word, T.A.; Wehrens, X.H.T. Targeting pathological leak of ryanodine receptors: Preclinical progress and the potential impact on treatments for cardiac arrhythmias and heart failure. Expert Opin. Ther. Targets 2020, 24, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Gorlach, A.; Bertram, K.; Hudecova, S.; Krizanova, O. Calcium and ROS: A mutual interplay. Redox Biol. 2015, 6, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Madreiter-Sokolowski, C.T.; Thomas, C.; Ristow, M. Interrelation between ROS and Ca2+ in aging and age-related diseases. Redox Biol. 2020, 36, 101678. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Wang, S. The Role of Rapamycin in Healthspan Extension via the Delay of Organ Aging. Ageing Res. Rev. 2021, 70, 101376. [Google Scholar] [CrossRef]
- Brillantes, A.B.; Ondrias, K.; Scott, A.; Kobrinsky, E.; Ondriasova, E.; Moschella, M.C.; Jayaraman, T.; Landers, M.; Ehrlich, B.E.; Marks, A.R. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 1994, 77, 513–523. [Google Scholar] [CrossRef]
- Song, K.Y.; Guo, X.M.; Wang, H.Q.; Zhang, L.; Huang, S.Y.; Huo, Y.C.; Zhang, G.; Feng, J.Z.; Zhang, R.R.; Ma, Y.; et al. MBNL1 reverses the proliferation defect of skeletal muscle satellite cells in myotonic dystrophy type 1 by inhibiting autophagy via the mTOR pathway. Cell Death Dis. 2020, 11, 545. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Puga, M.; Gerenu, G.; Bargiela, A.; Espinosa-Espinosa, J.; Mosqueira-Martín, L.; Sagartzazu-Aizpurua, M.; Aizpurua, J.M.; Vallejo-Illarramendi, A.; Artero, R.; López de Munain, A.; et al. A Novel Class of FKBP12 Ligands Rescues Premature Aging Phenotypes Associated with Myotonic Dystrophy Type 1. Cells 2024, 13, 1939. https://doi.org/10.3390/cells13231939
García-Puga M, Gerenu G, Bargiela A, Espinosa-Espinosa J, Mosqueira-Martín L, Sagartzazu-Aizpurua M, Aizpurua JM, Vallejo-Illarramendi A, Artero R, López de Munain A, et al. A Novel Class of FKBP12 Ligands Rescues Premature Aging Phenotypes Associated with Myotonic Dystrophy Type 1. Cells. 2024; 13(23):1939. https://doi.org/10.3390/cells13231939
Chicago/Turabian StyleGarcía-Puga, Mikel, Gorka Gerenu, Ariadna Bargiela, Jorge Espinosa-Espinosa, Laura Mosqueira-Martín, Maialen Sagartzazu-Aizpurua, Jesús M. Aizpurua, Ainara Vallejo-Illarramendi, Rubén Artero, Adolfo López de Munain, and et al. 2024. "A Novel Class of FKBP12 Ligands Rescues Premature Aging Phenotypes Associated with Myotonic Dystrophy Type 1" Cells 13, no. 23: 1939. https://doi.org/10.3390/cells13231939
APA StyleGarcía-Puga, M., Gerenu, G., Bargiela, A., Espinosa-Espinosa, J., Mosqueira-Martín, L., Sagartzazu-Aizpurua, M., Aizpurua, J. M., Vallejo-Illarramendi, A., Artero, R., López de Munain, A., & Matheu, A. (2024). A Novel Class of FKBP12 Ligands Rescues Premature Aging Phenotypes Associated with Myotonic Dystrophy Type 1. Cells, 13(23), 1939. https://doi.org/10.3390/cells13231939