A Transcriptomics-Based Machine Learning Model Discriminating Mild Cognitive Impairment and the Prediction of Conversion to Alzheimer’s Disease
<p>Study design and workflow for identifying RNA biomarkers predictive of MCI or AD. Methods for biomarker identification and functional annotation are depicted in grey round squares. The numbers in parentheses at the bottom indicate the RNA probes that met the selection criteria and were subsequently identified using ML algorithms. Abbreviations: CU (cognitively unimpaired), MCI (mild cognitive impairment), AD (Alzheimer’s disease), DEG (differentially expressed gene), and GSEA (gene set enrichment analysis).</p> "> Figure 2
<p>Comparison of the discriminating performances of multivariate models. (<b>a</b>) Receiver operating characteristic (ROC) curves for RNA biomarkers combined with demographic variables in the CU vs. MCI comparison. (<b>b</b>) ROC curves for RNA biomarkers in combination with demographics and neuropsychological measures in the CU vs. MCI comparison. (<b>c</b>) ROC curves for RNA biomarkers combined with demographic variables in the MCI vs. AD comparison. (<b>d</b>) ROC curves for RNA biomarkers in combination with demographics and neuropsychological measures in the MCI vs. AD comparison.</p> "> Figure 2 Cont.
<p>Comparison of the discriminating performances of multivariate models. (<b>a</b>) Receiver operating characteristic (ROC) curves for RNA biomarkers combined with demographic variables in the CU vs. MCI comparison. (<b>b</b>) ROC curves for RNA biomarkers in combination with demographics and neuropsychological measures in the CU vs. MCI comparison. (<b>c</b>) ROC curves for RNA biomarkers combined with demographic variables in the MCI vs. AD comparison. (<b>d</b>) ROC curves for RNA biomarkers in combination with demographics and neuropsychological measures in the MCI vs. AD comparison.</p> "> Figure 3
<p>GSEA and gene network analysis for DEGs discriminating MCI from CU individuals. Ten hub genes from upregulated DEGs are displayed in the center small circle, representing those that overlap more than three clusters. Nodes with a deeper red color represent higher rank scores.</p> "> Figure 4
<p>GSEA and gene network analysis for DEGs discriminating AD from MCI. Ten hub genes from upregulated DEGs are displayed in the center small circle, representing those that overlap more than three clusters.</p> "> Figure 5
<p>Sensitivity analysis result. (<b>a</b>) Confusion matrix for the generalized regression; the sensitivity analysis misclassified 26 cases as CU and 22 cases as MCI out of the 712 MCI and 296 CU cases, respectively. (<b>b</b>) ROC curve of the sensitivity analysis, with an AUC of 0.9801.</p> "> Figure 6
<p>Representative Cox proportional hazard curves for MCI-to-AD converters. Expression values normalized using the robust multi-chip average method per each tertile are indicated in figure insets: (<b>a</b>) GPD1; (<b>b</b>) NPPA; (<b>c</b>) CAV1; (<b>d</b>) LILRB3. Year “0” marks the baseline diagnosis. Tick marks represent participants who were AD conversion-free at the last follow-up or who were censored at that time point.</p> "> Figure 7
<p>Prediction of longitudinal neuropsychological score alterations based on baseline plasma protein levels. Trajectories were derived from the LMM, with the baseline plasma pTau181 and NFL levels as predictors, being adjusted for age, sex, ApoE ε4, and years of education. MMSE trajectories were stratified by (<b>a</b>) pTau181 or (<b>b</b>) NFL tertiles, while ADNI-MEM trajectories were stratified by (<b>c</b>) pTau181 or (<b>d</b>) NFL tertiles. The trajectories depict changes in the MMSE or ADNI-MEM scores over time influenced by different tertiles of baseline pTau181 or NFL levels. The slope, indicative of the rate of cognitive decline, appears steeper for individuals with higher protein levels. The red line represents the highest tertile for each protein, while the blue and green lines represent the intermediate and lowest tertiles, respectively. Shaded areas indicate the 95% confidence intervals of the regression lines. This figure displays the mean levels within each covariate (age and years of education), with females as the reference group. The time span is capped at four years, corresponding to four follow-up assessments.</p> "> Figure 7 Cont.
<p>Prediction of longitudinal neuropsychological score alterations based on baseline plasma protein levels. Trajectories were derived from the LMM, with the baseline plasma pTau181 and NFL levels as predictors, being adjusted for age, sex, ApoE ε4, and years of education. MMSE trajectories were stratified by (<b>a</b>) pTau181 or (<b>b</b>) NFL tertiles, while ADNI-MEM trajectories were stratified by (<b>c</b>) pTau181 or (<b>d</b>) NFL tertiles. The trajectories depict changes in the MMSE or ADNI-MEM scores over time influenced by different tertiles of baseline pTau181 or NFL levels. The slope, indicative of the rate of cognitive decline, appears steeper for individuals with higher protein levels. The red line represents the highest tertile for each protein, while the blue and green lines represent the intermediate and lowest tertiles, respectively. Shaded areas indicate the 95% confidence intervals of the regression lines. This figure displays the mean levels within each covariate (age and years of education), with females as the reference group. The time span is capped at four years, corresponding to four follow-up assessments.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Datasets and Participants
2.2. Neuropsychological Assessment
2.3. Imputation of Missing Values
2.4. Formulation of the Training Dataset
2.5. Merging Variables from Different Visits
2.6. Transcriptomics Data
2.7. Machine Learning (ML)
2.8. Gene Set Enrichment Analysis (GSEA)
2.9. GO and Functional Annotation
2.10. Protein Immunoassays
2.11. Cox Proportional Hazards Analysis
2.12. Sensitivity Analysis for SVM Model Outcomes
2.13. Linear Mixed-Effects Model (LMM)
2.14. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Transcriptomics-Based RNA Biomarkers and Accuracy Comparisons
3.3. Discriminating Performances of Multivariate Models
3.4. GSEA, GO, and Functional Annotation
3.5. Sensitivity Analysis
3.6. Prediction of MCI-to-AD Conversion
3.7. Longitudinal Cognitive Status Predictors: Plasma pTau181 and NFL
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, S.W.C.; Servaes, S.; Morais, J.A.; Rosa-Neto, P. World Alzheimer Report 2022: Life After Diagnosis: Navigating Treatment, Care and Support. Available online: https://www.alzint.org/u/World-Alzheimer-Report-2022.pdf (accessed on 14 November 2024).
- Huang, L.K.; Kuan, Y.C.; Lin, H.W.; Hu, C.J. Clinical trials of new drugs for Alzheimer disease: A 2020–2023 update. J. Biomed. Sci. 2023, 30, 83. [Google Scholar] [CrossRef] [PubMed]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Busse, A.; Angermeyer, M.C.; Riedel-Heller, S.G. Progression of mild cognitive impairment to dementia: A challenge to current thinking. Br. J. Psychiatry 2006, 189, 399–404. [Google Scholar] [CrossRef]
- Casagrande, M.; Marselli, G.; Agostini, F.; Forte, G.; Favieri, F.; Guarino, A. The complex burden of determining prevalence rates of mild cognitive impairment: A systematic review. Front. Psychiatry 2022, 13, 960648. [Google Scholar] [CrossRef]
- Ward, A.; Tardiff, S.; Dye, C.; Arrighi, H.M. Rate of conversion from prodromal Alzheimer’s disease to Alzheimer’s dementia: A systematic review of the literature. Dement. Geriatr. Cogn. Disord. Extra 2013, 3, 320–332. [Google Scholar] [CrossRef]
- Arevalo-Rodriguez, I.; Smailagic, N.; Roque-Figuls, M.; Ciapponi, A.; Sanchez-Perez, E.; Giannakou, A.; Pedraza, O.L.; Bonfill Cosp, X.; Cullum, S. Mini-Mental State Examination (MMSE) for the early detection of dementia in people with mild cognitive impairment (MCI). Cochrane Database Syst. Rev. 2021, 7, CD010783. [Google Scholar] [CrossRef]
- Tahami Monfared, A.A.; Byrnes, M.J.; White, L.A.; Zhang, Q. Alzheimer’s Disease: Epidemiology and Clinical Progression. Neurol. Ther. 2022, 11, 553–569. [Google Scholar] [CrossRef]
- Karikari, T.K.; Pascoal, T.A.; Ashton, N.J.; Janelidze, S.; Benedet, A.L.; Rodriguez, J.L.; Chamoun, M.; Savard, M.; Kang, M.S.; Therriault, J.; et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: A diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020, 19, 422–433. [Google Scholar] [CrossRef]
- Moradi, E.; Marttinen, M.; Hakkinen, T.; Hiltunen, M.; Nykter, M. Supervised pathway analysis of blood gene expression profiles in Alzheimer’s disease. Neurobiol. Aging 2019, 84, 98–108. [Google Scholar] [CrossRef]
- Shigemizu, D.; Mori, T.; Akiyama, S.; Higaki, S.; Watanabe, H.; Sakurai, T.; Niida, S.; Ozaki, K. Identification of potential blood biomarkers for early diagnosis of Alzheimer’s disease through RNA sequencing analysis. Alzheimers Res. Ther. 2020, 12, 87. [Google Scholar] [CrossRef] [PubMed]
- Brito, L.M.; Ribeiro-Dos-Santos, A.; Vidal, A.F.; de Araujo, G.S. Differential Expression and miRNA-Gene Interactions in Early and Late Mild Cognitive Impairment. Biology 2020, 9, 251. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.B.; Kauwe, J.S.K. Predicting Clinical Dementia Rating Using Blood RNA Levels. Genes 2020, 11, 706. [Google Scholar] [CrossRef] [PubMed]
- Shigemizu, D.; Akiyama, S.; Higaki, S.; Sugimoto, T.; Sakurai, T.; Boroevich, K.A.; Sharma, A.; Tsunoda, T.; Ochiya, T.; Niida, S.; et al. Prognosis prediction model for conversion from mild cognitive impairment to Alzheimer’s disease created by integrative analysis of multi-omics data. Alzheimers Res. Ther. 2020, 12, 145. [Google Scholar] [CrossRef] [PubMed]
- van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; et al. Lecanemab in Early Alzheimer’s Disease. N. Engl. J. Med. 2023, 388, 9–21. [Google Scholar] [CrossRef]
- Sims, J.R.; Zimmer, J.A.; Evans, C.D.; Lu, M.; Ardayfio, P.; Sparks, J.; Wessels, A.M.; Shcherbinin, S.; Wang, H.; Monkul Nery, E.S.; et al. Donanemab in Early Symptomatic Alzheimer Disease: The TRAILBLAZER-ALZ 2 Randomized Clinical Trial. JAMA 2023, 330, 512–527. [Google Scholar] [CrossRef]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939–944. [Google Scholar] [CrossRef]
- Crane, P.K.; Carle, A.; Gibbons, L.E.; Insel, P.; Mackin, R.S.; Gross, A.; Jones, R.N.; Mukherjee, S.; Curtis, S.M.; Harvey, D.; et al. Development and assessment of a composite score for memory in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Brain Imaging Behav. 2012, 6, 502–516. [Google Scholar] [CrossRef]
- Reise, S.P.; Widaman, K.F.; Pugh, R.H. Confirmatory factor analysis and item response theory: Two approaches for exploring measurement invariance. Psychol. Bull. 1993, 114, 552–566. [Google Scholar] [CrossRef]
- Gibbons, L.E.; Carle, A.C.; Mackin, R.S.; Harvey, D.; Mukherjee, S.; Insel, P.; Curtis, S.M.; Mungas, D.; Crane, P.K.; Alzheimer’s Disease Neuroimaging Initiative. A composite score for executive functioning, validated in Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants with baseline mild cognitive impairment. Brain Imaging Behav. 2012, 6, 517–527. [Google Scholar] [CrossRef]
- Templ, M.; Kowarik, A.; Filzmoser, P. Iterative stepwise regression imputation using standard and robust methods. Comput. Stat. Data Anal. 2011, 55, 2793–2806. [Google Scholar] [CrossRef]
- Nho, K.; Nudelman, K.; Allen, M.; Hodges, A.; Kim, S.; Risacher, S.L.; Apostolova, L.G.; Lin, K.; Lunnon, K.; Wang, X.; et al. Genome-wide transcriptome analysis identifies novel dysregulated genes implicated in Alzheimer’s pathology. Alzheimers Dement. 2020, 16, 1213–1223. [Google Scholar] [CrossRef]
- Saykin, A.J.; Shen, L.; Yao, X.; Kim, S.; Nho, K.; Risacher, S.L.; Ramanan, V.K.; Foroud, T.M.; Faber, K.M.; Sarwar, N.; et al. Genetic studies of quantitative MCI and AD phenotypes in ADNI: Progress, opportunities, and plans. Alzheimers Dement. 2015, 11, 792–814. [Google Scholar] [CrossRef] [PubMed]
- Choe, S.E.; Boutros, M.; Michelson, A.M.; Church, G.M.; Halfon, M.S. Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset. Genome Biol. 2005, 6, R16. [Google Scholar] [CrossRef] [PubMed]
- Soerensen, M.; Hozakowska-Roszkowska, D.M.; Nygaard, M.; Larsen, M.J.; Schwammle, V.; Christensen, K.; Christiansen, L.; Tan, Q. A Genome-Wide Integrative Association Study of DNA Methylation and Gene Expression Data and Later Life Cognitive Functioning in Monozygotic Twins. Front. Neurosci. 2020, 14, 233. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- Mattsson, N.; Cullen, N.C.; Andreasson, U.; Zetterberg, H.; Blennow, K. Association Between Longitudinal Plasma Neurofilament Light and Neurodegeneration in Patients With Alzheimer Disease. JAMA Neurol. 2019, 76, 791–799. [Google Scholar] [CrossRef]
- Park, M.K.; Ahn, J.; Kim, Y.J.; Lee, J.W.; Lee, J.C.; Hwang, S.J.; Kim, K.C. Predicting Longitudinal Cognitive Decline and Alzheimer’s Conversion in Mild Cognitive Impairment Patients Based on Plasma Biomarkers. Cells 2024, 13, 1085. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Janelidze, S.; Mattsson, N.; Palmqvist, S.; Smith, R.; Beach, T.G.; Serrano, G.E.; Chai, X.; Proctor, N.K.; Eichenlaub, U.; Zetterberg, H.; et al. Plasma P-tau181 in Alzheimer’s disease: Relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer’s dementia. Nat. Med. 2020, 26, 379–386. [Google Scholar] [CrossRef]
- Preische, O.; Schultz, S.A.; Apel, A.; Kuhle, J.; Kaeser, S.A.; Barro, C.; Graber, S.; Kuder-Buletta, E.; LaFougere, C.; Laske, C.; et al. Serum neurofilament dynamics predicts neurodegeneration and clinical progression in presymptomatic Alzheimer’s disease. Nat. Med. 2019, 25, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Brookmeyer, R.; Gray, S.; Kawas, C. Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am. J. Public Health 1998, 88, 1337–1342. [Google Scholar] [CrossRef] [PubMed]
- Brookmeyer, R.; Johnson, E.; Ziegler-Graham, K.; Arrighi, H.M. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007, 3, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Wang, B.; Hamel, A.P.; Melkonyan, M.; Ang, T.F.A.; Alzheimer’s Disease Neuroimaging Initiative; Au, R.; Lin, H. Prediction of Progression from Mild Cognitive Impairment to Alzheimer’s disease with Longitudinal and Multimodal Data. Front. Dement. 2023, 2, 1271680. [Google Scholar] [CrossRef] [PubMed]
- Bettcher, B.M.; Tansey, M.G.; Dorothee, G.; Heneka, M.T. Peripheral and central immune system crosstalk in Alzheimer disease—A research prospectus. Nat. Rev. Neurol. 2021, 17, 689–701. [Google Scholar] [CrossRef]
- Lau, V.; Ramer, L.; Tremblay, M.E. An aging, pathology burden, and glial senescence build-up hypothesis for late onset Alzheimer’s disease. Nat. Commun. 2023, 14, 1670. [Google Scholar] [CrossRef]
- Lutshumba, J.; Nikolajczyk, B.S.; Bachstetter, A.D. Dysregulation of Systemic Immunity in Aging and Dementia. Front. Cell. Neurosci. 2021, 15, 652111. [Google Scholar] [CrossRef]
- Janelidze, S.; Mattsson, N.; Stomrud, E.; Lindberg, O.; Palmqvist, S.; Zetterberg, H.; Blennow, K.; Hansson, O. CSF biomarkers of neuroinflammation and cerebrovascular dysfunction in early Alzheimer disease. Neurology 2018, 91, e867–e877. [Google Scholar] [CrossRef]
- Qian, X.H.; Liu, X.L.; Chen, S.D.; Tang, H.D. Integrating peripheral blood and brain transcriptomics to identify immunological features associated with Alzheimer’s disease in mild cognitive impairment patients. Front. Immunol. 2022, 13, 986346. [Google Scholar] [CrossRef]
- Bharthur Sanjay, A.; Patania, A.; Yan, X.; Svaldi, D.; Duran, T.; Shah, N.; Nemes, S.; Chen, E.; Apostolova, L.G. Characterization of gene expression patterns in mild cognitive impairment using a transcriptomics approach and neuroimaging endophenotypes. Alzheimers Dement. 2022, 18, 2493–2508. [Google Scholar] [CrossRef]
- Morris, G.; Berk, M.; Maes, M.; Puri, B.K. Could Alzheimer’s Disease Originate in the Periphery and If So How So? Mol. Neurobiol. 2019, 56, 406–434. [Google Scholar] [CrossRef] [PubMed]
- Sun, E.; Motolani, A.; Campos, L.; Lu, T. The Pivotal Role of NF-kB in the Pathogenesis and Therapeutics of Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 8972. [Google Scholar] [CrossRef] [PubMed]
- Bennett, R.E.; Robbins, A.B.; Hu, M.; Cao, X.; Betensky, R.A.; Clark, T.; Das, S.; Hyman, B.T. Tau induces blood vessel abnormalities and angiogenesis-related gene expression in P301L transgenic mice and human Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2018, 115, E1289–E1298. [Google Scholar] [CrossRef] [PubMed]
- Pinky; Neha; Salman, M.; Kumar, P.; Khan, M.A.; Jamal, A.; Parvez, S. Age-related pathophysiological alterations in molecular stress markers and key modulators of hypoxia. Ageing Res. Rev. 2023, 90, 102022. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Tian, S.; Gao, H.; Xu, Y. Hypoxia increases Abeta-induced tau phosphorylation by calpain and promotes behavioral consequences in AD transgenic mice. J. Mol. Neurosci. 2013, 51, 138–147. [Google Scholar] [CrossRef]
- Merelli, A.; Repetto, M.; Lazarowski, A.; Auzmendi, J. Hypoxia, Oxidative Stress, and Inflammation: Three Faces of Neurodegenerative Diseases. J. Alzheimers Dis. 2021, 82, S109–S126. [Google Scholar] [CrossRef]
- Fagiani, F.; Lanni, C.; Racchi, M.; Pascale, A.; Govoni, S. Amyloid-beta and Synaptic Vesicle Dynamics: A Cacophonic Orchestra. J. Alzheimers Dis. 2019, 72, 1–14. [Google Scholar] [CrossRef]
- Peng, S.; Zeng, L.; Haure-Mirande, J.V.; Wang, M.; Huffman, D.M.; Haroutunian, V.; Ehrlich, M.E.; Zhang, B.; Tu, Z. Transcriptomic Changes Highly Similar to Alzheimer’s Disease Are Observed in a Subpopulation of Individuals During Normal Brain Aging. Front. Aging Neurosci. 2021, 13, 711524. [Google Scholar] [CrossRef]
- Musunuri, S.; Khoonsari, P.E.; Mikus, M.; Wetterhall, M.; Haggmark-Manberg, A.; Lannfelt, L.; Erlandsson, A.; Bergquist, J.; Ingelsson, M.; Shevchenko, G.; et al. Increased Levels of Extracellular Microvesicle Markers and Decreased Levels of Endocytic/Exocytic Proteins in the Alzheimer’s Disease Brain. J. Alzheimers Dis. 2016, 54, 1671–1686. [Google Scholar] [CrossRef]
- Hartmann, T.; Bieger, S.C.; Bruhl, B.; Tienari, P.J.; Ida, N.; Allsop, D.; Roberts, G.W.; Masters, C.L.; Dotti, C.G.; Unsicker, K.; et al. Distinct sites of intracellular production for Alzheimer’s disease A beta40/42 amyloid peptides. Nat. Med. 1997, 3, 1016–1020. [Google Scholar] [CrossRef]
- Kuo, C.C.; Chiang, A.W.T.; Baghdassarian, H.M.; Lewis, N.E. Dysregulation of the secretory pathway connects Alzheimer’s disease genetics to aggregate formation. Cell Syst. 2021, 12, 873–884.e4. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.R.; Shao, Y.; Sadowski, M.J.; Alzheimer’s Disease Neuroimaging Initiative. Segmented Linear Mixed Model Analysis Reveals Association of the APOEvarepsilon4 Allele with Faster Rate of Alzheimer’s Disease Dementia Progression. J. Alzheimers Dis. 2021, 82, 921–937. [Google Scholar] [CrossRef] [PubMed]
CU | MCI (Non-Converters) | MCI (AD Converters) | p-Value * | |
---|---|---|---|---|
(n = 78) | (n = 211) | (n = 60) | ||
Age | 72.6 [68.0; 77.9] | 69.9 [64.8; 75.6] | 72.3 [68.3; 76.5] | 0.007 |
Gender | 0.406 | |||
- Female | 41 (52.6%) | 96 (45.5%) | 25 (41.7%) | |
- Male | 37 (47.4%) | 115 (54.5%) | 35 (58.3%) | |
Edu. Years | 16.0 [15.0; 18.0] | 17.0 [14.0; 18.0] | 16.0 [14.5; 18.0] | 0.315 |
ApoE ε4 | <0.001 | |||
- 0 | 59 (75.6%) | 126 (59.7%) | 18 (30.0%) | |
- 1 | 18 (23.1%) | 70 (33.2%) | 28 (46.7%) | |
- 2 | 1 (1.3%) | 15 (7.1%) | 14 (23.3%) | |
pTau181 (pg/mL) | 13.1 [9.4; 19.0] | 13.6 [9.2; 19.1] | 22.1 [15.3; 28.5] | <0.001 |
NFL (pg/mL) | 30.9 [24.4; 40.4] | 30.7 [24.0; 39.8] | 39.8 [28.9; 53.7] | 0.001 |
MMSE | 29.0 [29.0; 30.0] | 29.0 [28.0; 30.0] | 27.0 [26.0; 29.0] | <0.001 |
MEM | 1.2 [0.7; 1.5] | 0.5 [0.1; 1.0] | −0.2 [−0.6; 0.1] | <0.001 |
EF | 0.9 [0.4; 1.6] | 0.7 [0.0; 1.2] | −0.0 [−0.6; 0.5] | <0.001 |
LAN | 1.1 [0.6; 1.4] | 0.6 [0.1; 1.0] | 0.1 [−0.3; 0.5] | <0.001 |
VS | 0.7 [−0.1; 0.7] | −0.1 [−0.1; 0.7] | −0.1 [−0.8; 0.7] | 0.003 |
Non-Converters * | Converters | Total | p-Value ** | |
---|---|---|---|---|
(n = 287) | (n = 62) | (n = 349) | ||
Age | 70.8 [65.8; 76.2] | 72.3 [68.3; 76.6] | 71.2 [66.0; 76.2] | 0.290 |
Gender | 0.719 | |||
- Female | 135 (47.5%) | 27 (43.5%) | 162 (46.4%) | |
- Male | 152 (53.0%) | 35 (56.5%) | 187 (53.6%) | |
Edu. Years | 17.0 [14.5; 18.0] | 16.0 [14.0; 18.0] | 16.0 [15.0; 18.0] | 0.107 |
ApoE ε4 | <0.001 | |||
- 0 | 184 (64.1%) | 19 (30.6%) | 203 (58.2%) | |
- 1 | 87 (30.3%) | 29 (46.8%) | 116 (33.2%) | |
- 2 | 16 (5.6%) | 14 (22.6%) | 30 (8.6%) | |
pTau181 (pg/mL) | 13.5 [9.4; 19.1] | 21.7 [14.9; 28.4] | 14.1 [10.2; 21.3] | <0.001 |
NFL (pg/mL) | 30.7 [24.0; 40.4] | 39.8 [28.0; 54.9] | 31.7 [24.7; 42.1] | <0.001 |
MMSE | 29.0 [28.0; 30.0] | 27.0 [26.0; 29.0] | 29.0 [27.0; 30.0] | <0.001 |
MEM | 0.7 [0.3; 1.2] | −0.2 [−0.6; 0.1] | 0.5 [0.1; 1.1] | <0.001 |
EF | 0.7 [0.1; 1.3] | 0.0 [−0.6; 0.6] | 0.6 [−0.0; 1.2] | <0.001 |
LAN | 0.7 [0.1; 1.2] | 0.2 [−0.3; 0.5] | 0.6 [0.0; 1.1] | <0.001 |
VS | 0.3 [−0.1; 0.7] | −0.1 [−0.8; 0.7] | −0.1 [−0.3; 0.7] | 0.003 |
CU_MCI | CU_MCI_AD | CUMCI_AD | MCI_AD | ||||||
---|---|---|---|---|---|---|---|---|---|
Cut-off p-value | 0.01 | 0.05 | 0.01 | 0.05 | 0.01 | 0.05 | 0.01 | 0.05 | |
No. of probes | 213 | 1299 | 223 | 1325 | 402 | 2227 | 350 | 1957 | |
CU vs. MCI | Lasso | 0.91 | 0.89 | 0.89 | 0.88 | 0.81 | 0.81 | 0.81 | 0.81 |
RF | 0.85 | 0.83 | 0.85 | 0.83 | 0.81 | 0.81 | 0.81 | 0.80 | |
Ridge | 0.93 | 0.97 | 0.96 | 0.97 | 0.65 | 0.69 | 0.66 | 0.73 | |
SVM | 0.94 | 0.97 | 0.97 | 0.97 | 0.81 | 0.81 | 0.81 | 0.81 | |
MCI vs. AD | Lasso | 0.15 | 0.2 | 0.3 | 0.21 | 0.63 | 0.47 | 0.54 | 0.44 |
RF | 0.00 | 0.00 | 0.00 | 0.00 | 0.21 | 0.04 | 0.24 | 0.05 | |
Ridge | 0.34 | 0.26 | 0.42 | 0.24 | 0.82 | 0.79 | 0.79 | 0.84 | |
SVM | 0.34 | 0.3 | 0.32 | 0.25 | 0.74 | 0.76 | 0.74 | 0.82 |
GO Description | Size | ES | NES | NOM p-Val |
---|---|---|---|---|
GOBP_Cellular response to reactive oxygen species | 9 | 0.633 | 2.050 | 0.008 |
GOBP_Response to peptide hormone | 19 | 0.470 | 2.050 | 0.002 |
GOBP_Regulation of defense response | 34 | 0.379 | 2.014 | 0.004 |
GOBP_Positive regulation of canonical NF-κB signal transduction | 12 | 0.554 | 1.966 | 0.004 |
GOBP_Regulation of leukocyte differentiation | 21 | 0.428 | 1.956 | 0.006 |
GOBP_Cytokine production | 42 | 0.342 | 1.946 | 0.002 |
GOBP_Positive regulation of immune system process | 49 | 0.318 | 1.894 | 0.002 |
GOBP_Positive regulation of hemopoiesis | 12 | 0.516 | 1.878 | 0.004 |
GOBP_Cell activation | 49 | 0.322 | 1.846 | 0.002 |
GOBP_Regulation of intracellular signal transduction | 82 | 0.271 | 1.807 | 0.006 |
GOBP_Positive regulation of intracellular signal transduction | 53 | 0.298 | 1.789 | 0.008 |
GOBP_Response to insulin | 12 | −0.503 | −1.807 | 0.002 |
GOBP_Fat cell differentiation | 16 | −0.465 | −1.866 | 0.008 |
GOBP_Regulation of DNA metabolic process | 24 | −0.456 | −2.096 | 0.002 |
GOBP_Double-strand break repair | 14 | −0.571 | −2.181 | 0.002 |
GO Description | Size | ES | NES | NOM p-Val |
---|---|---|---|---|
GOBP_Regulated exocytosis | 23 | 0.521 | 2.230 | 0.000 |
GOBP_Neurotransmitter secretion | 14 | 0.605 | 2.207 | 0.000 |
GOBP_Regulation of membrane repolarization | 6 | 0.810 | 2.105 | 0.000 |
GOBP_TOR_signaling | 11 | 0.620 | 2.081 | 0.002 |
GOBP_Exocytosis | 37 | 0.397 | 1.989 | 0.004 |
GOBP_Positive regulation of intracellular protein transport | 11 | 0.593 | 1.984 | 0.002 |
GOBP_Regulation of regulated secretory pathway | 11 | 0.600 | 1.951 | 0.000 |
GOBP_Adipose tissue development | 9 | 0.623 | 1.943 | 0.002 |
GOBP_Positive regulation of ROS species metabolic process | 8 | 0.652 | 1.918 | 0.004 |
GOBP_Negative regulation of TOR signaling | 8 | 0.650 | 1.882 | 0.004 |
GOBP_Cellular response to cAMP | 6 | 0.732 | 1.876 | 0.004 |
GOBP_Vesicle docking | 8 | 0.648 | 1.870 | 0.006 |
GOBP_Cellular modified amino acid metabolic process | 15 | 0.486 | 1.834 | 0.010 |
GOBP_Export from cell | 94 | 0.268 | 1.735 | 0.002 |
GOBP_Microtubule cytoskeleton organization | 49 | −0.332 | −1.758 | 0.009 |
GOBP_DNA metabolic process | 70 | −0.329 | −1.905 | 0.000 |
GOBP_DNA damage response | 57 | −0.361 | −1.978 | 0.004 |
GOBP_Negative regulation of cell adhesion | 26 | −0.457 | −2.006 | 0.000 |
GOBP_Organelle fission | 29 | −0.462 | −2.049 | 0.000 |
GOBP_DNA repair | 31 | −0.480 | −2.213 | 0.000 |
Gene | Probe | β | SE | z | p Value | HR (95% CI) |
---|---|---|---|---|---|---|
GPD1 | 11720473_at | 1.025 | 0.121 | 8.452 | 2.86 × 10−17 | 2.79 (2.20–3.54) |
HAP1 | 11731552_a_at | 0.922 | 0.110 | 8.407 | 4.20 × 10−17 | 2.51 (2.03–3.12) |
ITGAM | 11732481_a_at | 0.864 | 0.119 | 7.277 | 3.42 × 10−13 | 2.37 (1.88–2.99) |
CBS | 11744287_x_at | 0.776 | 0.110 | 7.080 | 1.44 × 10−12 | 2.17 (1.75–2.69) |
DIP2B | 11717068_a_at | 0.728 | 0.105 | 6.924 | 4.39 × 10−12 | 2.07 (1.69–2.54) |
HRH2 | 11740951_s_at | 0.723 | 0.109 | 6.634 | 3.27 × 10−11 | 2.06 (1.66–2.55) |
LILRB3 | 11745488_s_at | 0.706 | 0.107 | 6.610 | 3.84 × 10−11 | 2.03 (1.64–2.50) |
GPR68 | 11724423_a_at | 0.642 | 0.109 | 5.872 | 4.31 × 10−9 | 1.90 (1.53–2.36) |
FBXL20 | 11729398_a_at | 0.638 | 0.103 | 6.170 | 6.82 × 10−10 | 1.89 (1.55–2.32) |
SLC12A1 | 11728244_s_at | 0.634 | 0.105 | 6.007 | 1.89 × 10−9 | 1.88 (1.53–2.32) |
NPPA | 11757468_a_at | 0.623 | 0.105 | 5.930 | 3.03 × 10−9 | 1.86 (1.52–2.29) |
TLR6 | 11737628_a_at | 0.621 | 0.108 | 5.775 | 7.71 × 10−9 | 1.86 (1.51–2.30) |
CBS | 11744835_s_at | 0.618 | 0.101 | 6.090 | 1.13 × 10−9 | 1.85 (1.52–2.26) |
SLC12A1 | 11752597_a_at | 0.615 | 0.107 | 5.761 | 8.37 × 10−9 | 1.85 (1.50–2.28) |
KCNB1 | 11732588_at | 0.591 | 0.111 | 5.317 | 1.06 × 10−7 | 1.81 (1.45–2.25) |
CYP4F2 | 11727964_x_at | 0.591 | 0.109 | 5.428 | 5.71 × 10−8 | 1.81 (1.46–2.24) |
RAB11FIP1 | 11761457_at | 0.590 | 0.101 | 5.868 | 4.40 × 10−9 | 1.80 (1.48–2.20) |
DIO1 | 11729362_a_at | 0.575 | 0.103 | 5.591 | 2.25 × 10−8 | 1.78 (1.45–2.17) |
SPTBN4 | 11734303_a_at | 0.574 | 0.106 | 5.432 | 5.57 × 10−8 | 1.78 (1.44–2.18) |
CBS | 11744286_s_at | 0.569 | 0.101 | 5.619 | 1.92 × 10−8 | 1.77 (1.45–2.15) |
CSGALNACT1 | 11732525_a_at | 0.563 | 0.105 | 5.335 | 9.55 × 10−8 | 1.76 (1.43–2.16) |
MTM1 | 11749427_a_at | 0.561 | 0.109 | 5.161 | 2.45 × 10−7 | 1.75 (1.42–2.17) |
ACVRL1 | 11747260_a_at | 0.537 | 0.105 | 5.133 | 2.86 × 10−7 | 1.71 (1.39–2.10) |
RNF152 | 11732769_at | 0.537 | 0.102 | 5.279 | 1.30 × 10−7 | 1.71 (1.40–2.09) |
ADIPOQ | 11734559_x_at | 0.522 | 0.101 | 5.178 | 2.24 × 10−7 | 1.69 (1.38–2.05) |
CAV1 | 11757013_x_at | 0.525 | 0.108 | 4.864 | 1.15 × 10−6 | 1.69 (1.37–2.09) |
DPYSL5 | 11739423_at | 0.518 | 0.109 | 4.759 | 1.95 × 10−6 | 1.68 (1.36–2.08) |
PPY | 11730869_s_at | 0.512 | 0.105 | 4.888 | 1.02 × 10−6 | 1.67 (1.36–2.05) |
CHDH | 11739355_at | 0.514 | 0.104 | 4.921 | 8.62 × 10−7 | 1.67 (1.36–2.05) |
WDR1 | 11745608_a_at | 0.500 | 0.108 | 4.641 | 3.47 × 10−6 | 1.65 (1.34–2.04) |
Cognition Measure | Predictors | β | SE | t | p Value |
---|---|---|---|---|---|
MMSE | pTau181 × time | −0.381 | 0.059 | −6.513 | <0.001 |
pTau181 | 0.040 | 0.261 | 0.153 | 0.879 | |
NFL × time | −0.285 | 0.059 | −4.828 | <0.001 | |
NFL | 0.554 | 0.263 | 2.111 | 0.036 | |
ADNI-MEM | pTau181 × time | −0.067 | 0.010 | −6.503 | <0.001 |
pTau181 | −0.156 | 0.088 | −1.764 | 0.080 | |
NFL × time | −0.061 | 0.010 | −5.875 | <0.001 | |
NFL | 0.057 | 0.087 | 0.659 | 0.511 | |
ADNI-EF | pTau181 × time | −0.058 | 0.013 | −4.516 | <0.001 |
pTau181 | −0.052 | 0.098 | −0.529 | 0.597 | |
NFL × time | −0.067 | 0.013 | −5.270 | <0.001 | |
NFL | 0.082 | 0.095 | 0.862 | 0.390 | |
ADNI-LAN | pTau181 × time | −0.060 | 0.013 | −4.625 | <0.001 |
pTau181 | −0.034 | 0.084 | −0.408 | 0.684 | |
NFL × time | −0.055 | 0.013 | −4.209 | <0.001 | |
NFL | 0.148 | 0.082 | 1.805 | 0.073 | |
ADNI-VS | pTau181 × time | −0.029 | 0.015 | −2.007 | 0.045 |
pTau181 | −0.022 | 0.069 | −0.319 | 0.750 | |
NFL × time | −0.017 | 0.014 | −1.193 | 0.233 | |
NFL | 0.037 | 0.068 | 0.546 | 0.586 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, M.-K.; Ahn, J.; Lim, J.-M.; Han, M.; Lee, J.-W.; Lee, J.-C.; Hwang, S.-J.; Kim, K.-C. A Transcriptomics-Based Machine Learning Model Discriminating Mild Cognitive Impairment and the Prediction of Conversion to Alzheimer’s Disease. Cells 2024, 13, 1920. https://doi.org/10.3390/cells13221920
Park M-K, Ahn J, Lim J-M, Han M, Lee J-W, Lee J-C, Hwang S-J, Kim K-C. A Transcriptomics-Based Machine Learning Model Discriminating Mild Cognitive Impairment and the Prediction of Conversion to Alzheimer’s Disease. Cells. 2024; 13(22):1920. https://doi.org/10.3390/cells13221920
Chicago/Turabian StylePark, Min-Koo, Jinhyun Ahn, Jin-Muk Lim, Minsoo Han, Ji-Won Lee, Jeong-Chan Lee, Sung-Joo Hwang, and Keun-Cheol Kim. 2024. "A Transcriptomics-Based Machine Learning Model Discriminating Mild Cognitive Impairment and the Prediction of Conversion to Alzheimer’s Disease" Cells 13, no. 22: 1920. https://doi.org/10.3390/cells13221920
APA StylePark, M. -K., Ahn, J., Lim, J. -M., Han, M., Lee, J. -W., Lee, J. -C., Hwang, S. -J., & Kim, K. -C. (2024). A Transcriptomics-Based Machine Learning Model Discriminating Mild Cognitive Impairment and the Prediction of Conversion to Alzheimer’s Disease. Cells, 13(22), 1920. https://doi.org/10.3390/cells13221920