Integrins and Actions of Androgen in Breast Cancer
"> Figure 1
<p>Schematically representing the signal transduction and biological activities induced by androgen in ER-positive breast cancer cells. Endogenous androgen, DHT, activates ER-mediated PI3K/Akt and ERK1/2 signaling pathways to regulate cell proliferation. Moreover, the process of ERK1/2-mediated cell proliferation is controlled by the activation of EGFRs stimulated by EGF, as well as the activation of iAR induced by the synthetic androgen, R1881. Upon EGFRs activation, it not only involves the formation of an association between iAR and Src complex but also triggers cell proliferation through PI3K/Akt/ERK1/2 signaling. Stimulation of mAR by TAC triggers the phosphorylation of FAK and Akt, resulting in enhanced cell apoptosis. In this mAR-mediated apoptosis, SGK1 plays a role in improving the apoptotic effect. Cell motility is downregulated upon mAR activation through the FAK/PI3K/Rac1 signaling pathway. In the absence of AR-driven signaling, EGFR induces PKC-mediated ERK1/2 activation and PN-1 expression to suppress cell motility. ERβ also inhibits cell motility through induction of integrin α1β1. The red arrows indicate Erβ/ integrin α1β1 pathway; The purple arrows indicate EGF/EGFR/PKC/ERK1/2/PN-1 pathway.</p> "> Figure 2
<p>Schematically representing the signal transduction and biological activities induced by androgen in ER-negative breast cancer cells. Activation of iAR by DHT stimulates ERK1/2-mediated cell proliferation either directly or through cross-talk with EGFRs. Additionally, DHT binding to integrin αvβ3 activates the FAK/ERK1/2 signaling pathway, resulting in phosphorylated ERK1/2 translocation to the nucleus and subsequent cell proliferation. The association of iAR, PI3K, and Src induced by R1881 leads to cell motility through the FAK/Akt/paxillin signaling pathway. The function of mAR activated by TAC is similar to that in ER-positive breast cancer cells. Without AR-driven signaling, EGFR enhances cell motility and proliferation by triggered Rac1/PI3K/Akt/PAK1 signaling and Src/ERK1/2 signaling, respectively. Integrin α3β1 or β1 can direct activate PI3K/Akt signaling to regulate cell motility. After binding of TGF-βR with TGF-β, integrin αv phosphorylates Smad2/3 to increase cell motility. The red arrows indicate integrin α3β1/PI3K/Akt/BRN2 pathway; The blue arrows indicate EGF/EGFR/Src/ERK1/2 pathway.</p> "> Figure 3
<p>Diagram illustrating the androgen-mediated signal transduction via integrins and the resulting biological activities. (<b>A</b>) Integrin-induced cell motility and adhesion are mediated by AR. Activation of iAR by DHT or R1881 affects different subtypes of integrin expression to regulate cell adhesion and motility. RANK/RANKL promotes iAR expression through integrin α2β1 and induces integrin α2β1-involved cell adhesion via FAK/Akt signaling pathway. In AR-expressing cells, FAK signaling modulates integrin α5β1-induced cell adhesion and integrin αv-induced cell motility. (<b>B</b>) Integrin-induced cell growth and survival are mediated by AR. Activation of iAR by R1881 induces the expression of integrin α6β1, which in turn regulates cell survival through HIF-1α-promoted BNIP3 expression. Furthermore, iAR activity is up-regulated by integrin αvβ6, leading to increased survivin expression and enhanced cell growth. The activation of IGF-IR suppresses the degradation of integrin α5β1 through endocytosis, allowing this remaining integrin α5β1 to induce cell growth. The brown arrows indicate RANK/integrin α2β1/ transcription factor (TF)/iAR and RANK/integrin α2β1/FAK/Akt pathways; The dark blue arrows indicate integrin α5β1/FAK/Akt pathway; The purple arrows indicate integrin αv/FAK/mTOR pathway; The light blue arrows indicate IGF-1R/ integrin α5β1 pathway; The red arrows indicate R1881/iAR/integrin α6β1 pathway; The green arrows indicate integrin αvβ6/JNK/iAR (activity)/survivin pathway; The orange arrows indicate integrin α6β1/HIF-1α/BNIP3 pathway.</p> "> Figure 3 Cont.
<p>Diagram illustrating the androgen-mediated signal transduction via integrins and the resulting biological activities. (<b>A</b>) Integrin-induced cell motility and adhesion are mediated by AR. Activation of iAR by DHT or R1881 affects different subtypes of integrin expression to regulate cell adhesion and motility. RANK/RANKL promotes iAR expression through integrin α2β1 and induces integrin α2β1-involved cell adhesion via FAK/Akt signaling pathway. In AR-expressing cells, FAK signaling modulates integrin α5β1-induced cell adhesion and integrin αv-induced cell motility. (<b>B</b>) Integrin-induced cell growth and survival are mediated by AR. Activation of iAR by R1881 induces the expression of integrin α6β1, which in turn regulates cell survival through HIF-1α-promoted BNIP3 expression. Furthermore, iAR activity is up-regulated by integrin αvβ6, leading to increased survivin expression and enhanced cell growth. The activation of IGF-IR suppresses the degradation of integrin α5β1 through endocytosis, allowing this remaining integrin α5β1 to induce cell growth. The brown arrows indicate RANK/integrin α2β1/ transcription factor (TF)/iAR and RANK/integrin α2β1/FAK/Akt pathways; The dark blue arrows indicate integrin α5β1/FAK/Akt pathway; The purple arrows indicate integrin αv/FAK/mTOR pathway; The light blue arrows indicate IGF-1R/ integrin α5β1 pathway; The red arrows indicate R1881/iAR/integrin α6β1 pathway; The green arrows indicate integrin αvβ6/JNK/iAR (activity)/survivin pathway; The orange arrows indicate integrin α6β1/HIF-1α/BNIP3 pathway.</p> "> Figure 4
<p>Predicted docking poses of DHT bound at the cRGD−binding site of integrin αvβ3. The generation of docking poses and further scoring were done by AutoDock 4 and PyMOL, as previously described [<a href="#B99-cells-12-02126" class="html-bibr">99</a>]. (<b>A</b>) The two−dimensional structure of DHT. (<b>B</b>) Close−up of DHT binding mode, superimposed with cRGD peptide within the integrin αvβ3. (<b>C</b>,<b>D</b>) The amino acid residues of integrin αvβ3 interact with the DHT molecule.</p> ">
Abstract
:1. Introduction
2. Androgen-Induced Signal Transduction in Breast Cancer Cells
3. Integrin-Related Signals in Breast Cancers
4. Interaction between Androgen and Integrins
5. Androgen, Integrin αvβ3, and PD-L1 Expression in Cancer Cells
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S.C. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020, 22, 61. [Google Scholar] [CrossRef]
- Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; et al. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 2018, 5, 77–106. [Google Scholar] [CrossRef]
- Levin, E.R. Membrane oestrogen receptor alpha signalling to cell functions. J. Physiol. 2009, 587, 5019–5023. [Google Scholar] [CrossRef] [PubMed]
- Birrell, S.N.; Bentel, J.M.; Hickey, T.E.; Ricciardelli, C.; Weger, M.A.; Horsfall, D.J.; Tilley, W.D. Androgens induce divergent proliferative responses in human breast cancer cell lines. J. Steroid. Biochem. Mol. Biol. 1995, 52, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Shi, H. Sex Hormones and Their Receptors Regulate Liver Energy Homeostasis. Int. J. Endocrinol. 2015, 2015, 294278. [Google Scholar] [CrossRef] [PubMed]
- Collignon, J.; Lousberg, L.; Schroeder, H.; Jerusalem, G. Triple-negative breast cancer: Treatment challenges and solutions. Breast Cancer (Dove Med. Press.) 2016, 8, 93–107. [Google Scholar] [CrossRef]
- Szelei, J.; Jimenez, J.; Soto, A.M.; Luizzi, M.F.; Sonnenschein, C. Androgen-induced inhibition of proliferation in human breast cancer MCF7 cells transfected with androgen receptor. Endocrinology 1997, 138, 1406–1412. [Google Scholar] [CrossRef]
- Greeve, M.A.; Allan, R.K.; Harvey, J.M.; Bentel, J.M. Inhibition of MCF-7 breast cancer cell proliferation by 5alpha-dihydrotestosterone; a role for p21(Cip1/Waf1). J. Mol. Endocrinol. 2004, 32, 793–810. [Google Scholar] [CrossRef]
- Lin, H.Y.; Sun, M.; Lin, C.; Tang, H.Y.; London, D.; Shih, A.; Davis, F.B.; Davis, P.J. Androgen-induced human breast cancer cell proliferation is mediated by discrete mechanisms in estrogen receptor-alpha-positive and -negative breast cancer cells. J. Steroid. Biochem. Mol. Biol. 2009, 113, 182–188. [Google Scholar] [CrossRef]
- Chin, Y.T.; Yang, S.H.; Chang, T.C.; Changou, C.A.; Lai, H.Y.; Fu, E.; HuangFu, W.C.; Davis, P.J.; Lin, H.Y.; Liu, L.F. Mechanisms of dihydrotestosterone action on resveratrol-induced anti-proliferation in breast cancer cells with different ERα status. Oncotarget 2015, 6, 35866–35879. [Google Scholar] [CrossRef]
- Alkaabi, D.; Arafat, K.; Sulaiman, S.; Al-Azawi, A.M.; Attoub, S. PD-1 Independent Role of PD-L1 in Triple-Negative Breast Cancer Progression. Int. J. Mol. Sci. 2023, 24, 6420. [Google Scholar] [CrossRef] [PubMed]
- Labrie, F.; Luu-The, V.; Martel, C.; Chernomoretz, A.; Calvo, E.; Morissette, J.; Labrie, C. Dehydroepiandrosterone (DHEA) is an anabolic steroid like dihydrotestosterone (DHT), the most potent natural androgen, and tetrahydrogestrinone (THG). J. Steroid. Biochem. Mol. Biol. 2006, 100, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Lonergan, P.E.; Tindall, D.J. Androgen receptor signaling in prostate cancer development and progression. J. Carcinog. 2011, 10, 20. [Google Scholar] [CrossRef]
- Hanamura, T.; Christenson, J.L.; O’Neill, K.I.; Rosas, E.; Spoelstra, N.S.; Williams, M.M.; Richer, J.K. Secreted indicators of androgen receptor activity in breast cancer pre-clinical models. Breast Cancer Res. 2021, 23, 102. [Google Scholar] [CrossRef]
- Zhang, K.; Yan, F.; Lei, X.; Wei, D.; Lu, H.; Zhu, Z.; Xiang, A.; Ye, Z.; Wang, L.; Zheng, W.; et al. Androgen receptor-mediated upregulation of quaking affects androgen receptor-related prostate cancer development and anti-androgen receptor therapy. Mol. Med. Rep. 2018, 17, 8203–8211. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, D.; Chen, S. SGK3 is an androgen-inducible kinase promoting prostate cancer cell proliferation through activation of p70 S6 kinase and up-regulation of cyclin D1. Mol. Endocrinol. 2014, 28, 935–948. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S.; Anand, S.; Khan, M.A.; Zubair, H.; Srivastava, S.K.; Singh, S.; Singh, A.P. Biphasic transcriptional and posttranscriptional regulation of MYB by androgen signaling mediates its growth control in prostate cancer. J. Biol. Chem. 2023, 299, 102725. [Google Scholar] [CrossRef]
- Agoff, S.N.; Swanson, P.E.; Linden, H.; Hawes, S.E.; Lawton, T.J. Androgen receptor expression in estrogen receptor-negative breast cancer. Immunohistochemical, clinical, and prognostic associations. Am. J. Clin. Pathol. 2003, 120, 725–731. [Google Scholar] [CrossRef]
- Dong, S.; Yousefi, H.; Savage, I.V.; Okpechi, S.C.; Wright, M.K.; Matossian, M.D.; Collins-Burow, B.M.; Burow, M.E.; Alahari, S.K. Ceritinib is a novel triple negative breast cancer therapeutic agent. Mol. Cancer 2022, 21, 138. [Google Scholar] [CrossRef]
- Farmer, P.; Bonnefoi, H.; Becette, V.; Tubiana-Hulin, M.; Fumoleau, P.; Larsimont, D.; Macgrogan, G.; Bergh, J.; Cameron, D.; Goldstein, D.; et al. Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 2005, 24, 4660–4671. [Google Scholar] [CrossRef]
- Doane, A.S.; Danso, M.; Lal, P.; Donaton, M.; Zhang, L.; Hudis, C.; Gerald, W.L. An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene 2006, 25, 3994–4008. [Google Scholar] [CrossRef]
- Pietri, E.; Conteduca, V.; Andreis, D.; Massa, I.; Melegari, E.; Sarti, S.; Cecconetto, L.; Schirone, A.; Bravaccini, S.; Serra, P.; et al. Androgen receptor signaling pathways as a target for breast cancer treatment. Endocr. Relat. Cancer 2016, 23, R485–R498. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, B.D.; Bauer, J.A.; Chen, X.; Sanders, M.E.; Chakravarthy, A.B.; Shyr, Y.; Pietenpol, J.A. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J. Clin. Investig. 2011, 121, 2750–2767. [Google Scholar] [CrossRef] [PubMed]
- Ho, Y.; Li, Z.L.; Shih, Y.J.; Chen, Y.R.; Wang, K.; Whang-Peng, J.; Lin, H.Y.; Davis, P.J. Integrin αvβ3 in the Mediating Effects of Dihydrotestosterone and Resveratrol on Breast Cancer Cell Proliferation. Int. J. Mol. Sci. 2020, 21, 2906. [Google Scholar] [CrossRef] [PubMed]
- Papakonstanti, E.A.; Kampa, M.; Castanas, E.; Stournaras, C. A rapid, nongenomic, signaling pathway regulates the actin reorganization induced by activation of membrane testosterone receptors. Mol. Endocrinol. 2003, 17, 870–881. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, L.; Hou, J.; Wen, D.; Yan, C.; Pu, J.; Ouyang, J.; Pan, H. Rapid membrane effect of testosterone in LNCaP cells. Urol. Int. 2008, 81, 353–359. [Google Scholar] [CrossRef]
- Kallergi, G.; Agelaki, S.; Markomanolaki, H.; Georgoulias, V.; Stournaras, C. Activation of FAK/PI3K/Rac1 signaling controls actin reorganization and inhibits cell motility in human cancer cells. Cell Physiol. Biochem. 2007, 20, 977–986. [Google Scholar] [CrossRef]
- Liu, G.; Honisch, S.; Liu, G.; Schmidt, S.; Pantelakos, S.; Alkahtani, S.; Toulany, M.; Lang, F.; Stournaras, C. Inhibition of SGK1 enhances mAR-induced apoptosis in MCF-7 breast cancer cells. Cancer Biol. Ther. 2015, 16, 52–59. [Google Scholar] [CrossRef]
- Yang, Y.; Du, J.; Hu, Z.; Liu, J.; Tian, Y.; Zhu, Y.; Wang, L.; Gu, L. Activation of Rac1-PI3K/Akt is required for epidermal growth factor-induced PAK1 activation and cell migration in MDA-MB-231 breast cancer cells. J. Biomed. Res. 2011, 25, 237–245. [Google Scholar] [CrossRef]
- Zhang, X.; Meng, J.; Wang, Z.Y. A switch role of Src in the biphasic EGF signaling of ER-negative breast cancer cells. PLoS ONE 2012, 7, e41613. [Google Scholar] [CrossRef]
- Moerkens, M.; Zhang, Y.; Wester, L.; van de Water, B.; Meerman, J.H. Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor α signalling and results in tamoxifen insensitive proliferation. BMC Cancer 2014, 14, 283. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Zhu, Q.; Li, X.; Zhu, G.; Deng, S.; Wang, Y.; Ni, L.; Chen, X.; Zhang, Y.; Xia, T.; et al. Protease Nexin I is a feedback regulator of EGF/PKC/MAPK/EGR1 signaling in breast cancer cells metastasis and stemness. Cell Death Dis. 2019, 10, 649. [Google Scholar] [CrossRef] [PubMed]
- Naderi, A.; Hughes-Davies, L. A functionally significant cross-talk between androgen receptor and ErbB2 pathways in estrogen receptor negative breast cancer. Neoplasia 2008, 10, 542–548. [Google Scholar] [CrossRef]
- Vranic, S.; Tawfik, O.; Palazzo, J.; Bilalovic, N.; Eyzaguirre, E.; Lee, L.M.; Adegboyega, P.; Hagenkord, J.; Gatalica, Z. EGFR and HER-2/neu expression in invasive apocrine carcinoma of the breast. Mod. Pathol. 2010, 23, 644–653. [Google Scholar] [CrossRef]
- Chia, K.; O’Brien, M.; Brown, M.; Lim, E. Targeting the Androgen Receptor in Breast Cancer. Curr. Oncol. Rep. 2015, 17, 4. [Google Scholar] [CrossRef]
- Castoria, G.; Giovannelli, P.; Di Donato, M.; Hayashi, R.; Arra, C.; Appella, E.; Auricchio, F.; Migliaccio, A. Targeting androgen receptor/Src complex impairs the aggressive phenotype of human fibrosarcoma cells. PLoS ONE 2013, 8, e76899. [Google Scholar] [CrossRef]
- Migliaccio, A.; Castoria, G.; Di Domenico, M.; Ciociola, A.; Lombardi, M.; De Falco, A.; Nanayakkara, M.; Bottero, D.; De Stasio, R.; Varricchio, L.; et al. Crosstalk between EGFR and extranuclear steroid receptors. Ann. N. Y. Acad. Sci. 2006, 1089, 194–200. [Google Scholar] [CrossRef]
- Kulkoyluoglu, E.; Madak-Erdogan, Z. Nuclear and extranuclear-initiated estrogen receptor signaling crosstalk and endocrine resistance in breast cancer. Steroids 2016, 114, 41–47. [Google Scholar] [CrossRef]
- Fuentes, N.; Silveyra, P. Estrogen receptor signaling mechanisms. Adv. Protein Chem. Struct. Biol. 2019, 116, 135–170. [Google Scholar] [CrossRef]
- Migliaccio, A.; Castoria, G.; Di Domenico, M.; de Falco, A.; Bilancio, A.; Lombardi, M.; Barone, M.V.; Ametrano, D.; Zannini, M.S.; Abbondanza, C.; et al. Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. Embo. J. 2000, 19, 5406–5417. [Google Scholar] [CrossRef] [PubMed]
- Giovannelli, P.; Di Donato, M.; Auricchio, F.; Castoria, G.; Migliaccio, A. Androgens Induce Invasiveness of Triple Negative Breast Cancer Cells Through AR/Src/PI3-K Complex Assembly. Sci. Rep. 2019, 9, 4490. [Google Scholar] [CrossRef] [PubMed]
- Mattila, M.M.; Tarkkonen, K.M.; Seppänen, J.A.; Ruohola, J.K.; Valve, E.M.; Härkönen, P.L. Androgen and fibroblast growth factor 8 (FGF8) downregulation of thrombospondin 1 (TSP1) in mouse breast cancer cells. Mol. Cell. Endocrinol. 2006, 253, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Borgenström, M.; Tienhaara, A.; Spillmann, D.; Salmivirta, M.; Jalkanen, M. Testosterone-induced growth of S115 mouse mammary tumor cells is dependent on heparan sulfate. Exp. Cell Res. 2001, 264, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.M.; O’Connell, M.J.; Miyamoto, H.; Huang, J.; Yao, J.L.; Messing, E.M.; Reeder, J.E. Androgenic dependence of exophytic tumor growth in a transgenic mouse model of bladder cancer: A role for thrombospondin-1. BMC Urol. 2008, 8, 7. [Google Scholar] [CrossRef]
- Hickey, T.E.; Selth, L.A.; Chia, K.M.; Laven-Law, G.; Milioli, H.H.; Roden, D.; Jindal, S.; Hui, M.; Finlay-Schultz, J.; Ebrahimie, E.; et al. The androgen receptor is a tumor suppressor in estrogen receptor-positive breast cancer. Nat. Med. 2021, 27, 310–320. [Google Scholar] [CrossRef]
- Wei, L.; Gao, H.; Yu, J.; Zhang, H.; Nguyen, T.T.L.; Gu, Y.; Passow, M.R.; Carter, J.M.; Qin, B.; Boughey, J.C.; et al. Pharmacological Targeting of Androgen Receptor Elicits Context-Specific Effects in Estrogen Receptor-Positive Breast Cancer. Cancer Res. 2023, 83, 456–470. [Google Scholar] [CrossRef]
- Shih, Y.W.; Chien, S.T.; Chen, P.S.; Lee, J.H.; Wu, S.H.; Yin, L.T. Alpha-mangostin suppresses phorbol 12-myristate 13-acetate-induced MMP-2/MMP-9 expressions via alphavbeta3 integrin/FAK/ERK and NF-kappaB signaling pathway in human lung adenocarcinoma A549 cells. Cell Biochem. Biophys. 2010, 58, 31–44. [Google Scholar] [CrossRef]
- Fujita, M.; Ieguchi, K.; Cedano-Prieto, D.M.; Fong, A.; Wilkerson, C.; Chen, J.Q.; Wu, M.; Lo, S.H.; Cheung, A.T.; Wilson, M.D.; et al. An integrin binding-defective mutant of insulin-like growth factor-1 (R36E/R37E IGF1) acts as a dominant-negative antagonist of the IGF1 receptor (IGF1R) and suppresses tumorigenesis but still binds to IGF1R. J. Biol. Chem. 2013, 288, 19593–19603. [Google Scholar] [CrossRef]
- Rapraeger, A.C. Synstatin: A selective inhibitor of the syndecan-1-coupled IGF1R-αvβ3 integrin complex in tumorigenesis and angiogenesis. FEBS J. 2013, 280, 2207–2215. [Google Scholar] [CrossRef]
- Davis, P.J.; Mousa, S.A.; Lin, H.Y. Nongenomic Actions of Thyroid Hormone: The Integrin Component. Physiol. Rev. 2021, 101, 319–352. [Google Scholar] [CrossRef]
- Humphries, M.J. Integrin structure. Biochem. Soc. Trans. 2000, 28, 311–339. [Google Scholar] [CrossRef] [PubMed]
- Hynes, R.O. Integrins: Bidirectional, allosteric signaling machines. Cell 2002, 110, 673–687. [Google Scholar] [CrossRef] [PubMed]
- Takada, Y.; Ye, X.; Simon, S. The integrins. Genome Biol. 2007, 8, 215. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, H.; Vatanmakanian, M.; Mahdiannasser, M.; Mashouri, L.; Alahari, N.V.; Monjezi, M.R.; Ilbeigi, S.; Alahari, S.K. Understanding the role of integrins in breast cancer invasion, metastasis, angiogenesis, and drug resistance. Oncogene 2021, 40, 1043–1063. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, K.K.; Pal, S.; Moulik, S.; Chatterjee, A. Integrins and metastasis. Cell Adh. Migr. 2013, 7, 251–261. [Google Scholar] [CrossRef]
- Lindberg, K.; Ström, A.; Lock, J.G.; Gustafsson, J.A.; Haldosén, L.A.; Helguero, L.A. Expression of estrogen receptor beta increases integrin alpha1 and integrin beta1 levels and enhances adhesion of breast cancer cells. J. Cell Physiol. 2010, 222, 156–167. [Google Scholar] [CrossRef]
- Wafai, R.; Williams, E.D.; de Souza, E.; Simpson, P.T.; McCart Reed, A.E.; Kutasovic, J.R.; Waltham, M.; Snell, C.E.; Blick, T.; Thompson, E.W.; et al. Integrin alpha-2 and beta-1 expression increases through multiple generations of the EDW01 patient-derived xenograft model of breast cancer-insight into their role in epithelial mesenchymal transition in vivo gained from an in vitro model system. Breast Cancer Res. 2020, 22, 136. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, L.; Li, H.; Ai, L.; Ma, Q.; Qiao, X.; Yang, J.; Zhang, H.; Ou, X.; Wang, Y.; et al. Binding blockade between TLN1 and integrin β1 represses triple-negative breast cancer. Elife 2022, 11, e68481. [Google Scholar] [CrossRef]
- Miskin, R.P.; Warren, J.S.A.; Ndoye, A.; Wu, L.; Lamar, J.M.; DiPersio, C.M. Integrin α3β1 Promotes Invasive and Metastatic Properties of Breast Cancer Cells through Induction of the Brn-2 Transcription Factor. Cancers 2021, 13, 480. [Google Scholar] [CrossRef]
- Zhang, D.X.; Dang, X.T.T.; Vu, L.T.; Lim, C.M.H.; Yeo, E.Y.M.; Lam, B.W.S.; Leong, S.M.; Omar, N.; Putti, T.C.; Yeh, Y.C.; et al. αvβ1 integrin is enriched in extracellular vesicles of metastatic breast cancer cells: A mechanism mediated by galectin-3. J. Extracell. Vesicles 2022, 11, e12234. [Google Scholar] [CrossRef]
- Carter, R.Z.; Micocci, K.C.; Natoli, A.; Redvers, R.P.; Paquet-Fifield, S.; Martin, A.C.; Denoyer, D.; Ling, X.; Kim, S.H.; Tomasin, R.; et al. Tumour but not stromal expression of β3 integrin is essential, and is required early, for spontaneous dissemination of bone-metastatic breast cancer. J. Pathol. 2015, 235, 760–772. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Drabsch, Y.; Pujuguet, P.; Ren, J.; van Laar, T.; Zhang, L.; van Dam, H.; Clément-Lacroix, P.; Ten Dijke, P. Genetic depletion and pharmacological targeting of αv integrin in breast cancer cells impairs metastasis in zebrafish and mouse xenograft models. Breast Cancer Res. 2015, 17, 28. [Google Scholar] [CrossRef] [PubMed]
- Lowell, C.A.; Mayadas, T.N. Overview: Studying integrins in vivo. Methods Mol. Biol. 2012, 757, 369–397. [Google Scholar] [CrossRef] [PubMed]
- Takayama, S.; Ishii, S.; Ikeda, T.; Masamura, S.; Doi, M.; Kitajima, M. The relationship between bone metastasis from human breast cancer and integrin alpha(v)beta3 expression. Anticancer Res. 2005, 25, 79–83. [Google Scholar]
- Brooks, P.C.; Strömblad, S.; Klemke, R.; Visscher, D.; Sarkar, F.H.; Cheresh, D.A. Antiintegrin alpha v beta 3 blocks human breast cancer growth and angiogenesis in human skin. J. Clin. Investig. 1995, 96, 1815–1822. [Google Scholar] [CrossRef]
- Weis, S.M.; Cheresh, D.A. αV integrins in angiogenesis and cancer. Cold Spring Harb. Perspect. Med. 2011, 1, a006478. [Google Scholar] [CrossRef]
- Robinson, S.D.; Reynolds, L.E.; Kostourou, V.; Reynolds, A.R.; da Silva, R.G.; Tavora, B.; Baker, M.; Marshall, J.F.; Hodivala-Dilke, K.M. Alphav beta3 integrin limits the contribution of neuropilin-1 to vascular endothelial growth factor-induced angiogenesis. J. Biol. Chem. 2009, 284, 33966–33981. [Google Scholar] [CrossRef]
- Xiong, J.P.; Stehle, T.; Zhang, R.; Joachimiak, A.; Frech, M.; Goodman, S.L.; Arnaout, M.A. Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science 2002, 296, 151–155. [Google Scholar] [CrossRef]
- Hensley, P.J.; Desiniotis, A.; Wang, C.; Stromberg, A.; Chen, C.S.; Kyprianou, N. Novel pharmacologic targeting of tight junctions and focal adhesions in prostate cancer cells. PLoS ONE 2014, 9, e86238. [Google Scholar] [CrossRef]
- Chen, Y.F.; Yang, Y.N.; Chu, H.R.; Huang, T.Y.; Wang, S.H.; Chen, H.Y.; Li, Z.L.; Yang, Y.S.H.; Lin, H.Y.; Hercbergs, A.; et al. Role of Integrin αvβ3 in Doxycycline-Induced Anti-Proliferation in Breast Cancer Cells. Front. Cell Dev. Biol. 2022, 10, 829788. [Google Scholar] [CrossRef]
- Kim, H.; Son, S.; Ko, Y.; Shin, I. CTGF regulates cell proliferation, migration, and glucose metabolism through activation of FAK signaling in triple-negative breast cancer. Oncogene 2021, 40, 2667–2681. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Dong, Y.; Huang, H.; Fu, H.; Duan, Y.; Wang, Q.; Du, L. Tumour targeted contrast enhanced ultrasound imaging dual-modal microbubbles for diagnosis and treatment of triple negative breast cancer. RSC Adv. 2019, 9, 5682–5691. [Google Scholar] [CrossRef] [PubMed]
- Zhong, P.; Gu, X.; Cheng, R.; Deng, C.; Meng, F.; Zhong, Z. α(v)β(3) integrin-targeted micellar mertansine prodrug effectively inhibits triple-negative breast cancer in vivo. Int. J. Nanomed. 2017, 12, 7913–7921. [Google Scholar] [CrossRef] [PubMed]
- Lan, K.C.; Wei, K.T.; Lin, P.W.; Lin, C.C.; Won, P.L.; Liu, Y.F.; Chen, Y.J.; Cheng, B.H.; Chu, T.G.; Chen, J.F.; et al. Targeted activation of androgen receptor signaling in the periosteum improves bone fracture repair. Cell Death Dis. 2022, 13, 123. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.G.; Go, R.E.; Hwang, K.A.; Choi, K.C. Resveratrol inhibits DHT-induced progression of prostate cancer cell line through interfering with the AR and CXCR4 pathway. J. Steroid. Biochem. Mol. Biol. 2019, 192, 105406. [Google Scholar] [CrossRef]
- Siech, C.; Rutz, J.; Maxeiner, S.; Grein, T.; Sonnenburg, M.; Tsaur, I.; Chun, F.K.; Blaheta, R.A. Insulin-like Growth Factor-1 Influences Prostate Cancer Cell Growth and Invasion through an Integrin α3, α5, αV, and β1 Dependent Mechanism. Cancers 2022, 14, 363. [Google Scholar] [CrossRef]
- Ma, W.L.; Jeng, L.B.; Lai, H.C.; Liao, P.Y.; Chang, C. Androgen receptor enhances cell adhesion and decreases cell migration via modulating β1-integrin-AKT signaling in hepatocellular carcinoma cells. Cancer Lett. 2014, 351, 64–71. [Google Scholar] [CrossRef]
- Fuzio, P.; Lucarelli, G.; Perlino, E.; Battaglia, M.; Bettocchi, C.; Selvaggi, F.P.; Ditonno, P. Androgen deprivation therapy regulation of beta1C integrin expression in prostate cancer. Oncol. Rep. 2009, 22, 327–335. [Google Scholar]
- Ziaee, S.; Chung, L.W. Induction of integrin α2 in a highly bone metastatic human prostate cancer cell line: Roles of RANKL and AR under three-dimensional suspension culture. Mol. Cancer 2014, 13, 208. [Google Scholar] [CrossRef]
- Evangelou, A.; Letarte, M.; Marks, A.; Brown, T.J. Androgen modulation of adhesion and antiadhesion molecules in PC-3 prostate cancer cells expressing androgen receptor. Endocrinology 2002, 143, 3897–3904. [Google Scholar] [CrossRef]
- Mirtti, T.; Nylund, C.; Lehtonen, J.; Hiekkanen, H.; Nissinen, L.; Kallajoki, M.; Alanen, K.; Gullberg, D.; Heino, J. Regulation of prostate cell collagen receptors by malignant transformation. Int. J. Cancer 2006, 118, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Hensley, P.J.; Li, J.; Zhang, Y.; Stark, T.W.; Heller, A.; Qian, H.; Shi, J.; Liu, Z.; Huang, J.A.; et al. Integrin-associated CD151 is a suppressor of prostate cancer progression. Am. J. Transl. Res. 2020, 12, 1428–1442. [Google Scholar] [PubMed]
- Sayeed, A.; Fedele, C.; Trerotola, M.; Ganguly, K.K.; Languino, L.R. IGF-IR promotes prostate cancer growth by stabilizing α5β1 integrin protein levels. PLoS ONE 2013, 8, e76513. [Google Scholar] [CrossRef] [PubMed]
- Nollet, E.A.; Cardo-Vila, M.; Ganguly, S.S.; Tran, J.D.; Schulz, V.V.; Cress, A.; Corey, E.; Miranti, C.K. Androgen receptor-induced integrin α6β1 and Bnip3 promote survival and resistance to PI3K inhibitors in castration-resistant prostate cancer. Oncogene 2020, 39, 5390–5404. [Google Scholar] [CrossRef]
- Bonaccorsi, L.; Carloni, V.; Muratori, M.; Salvadori, A.; Giannini, A.; Carini, M.; Serio, M.; Forti, G.; Baldi, E. Androgen receptor expression in prostate carcinoma cells suppresses alpha6beta4 integrin-mediated invasive phenotype. Endocrinology 2000, 141, 3172–3182. [Google Scholar] [CrossRef]
- Lu, H.; Wang, T.; Li, J.; Fedele, C.; Liu, Q.; Zhang, J.; Jiang, Z.; Jain, D.; Iozzo, R.V.; Violette, S.M.; et al. αvβ6 Integrin Promotes Castrate-Resistant Prostate Cancer through JNK1-Mediated Activation of Androgen Receptor. Cancer Res. 2016, 76, 5163–5174. [Google Scholar] [CrossRef]
- Dutta, A.; Li, J.; Lu, H.; Akech, J.; Pratap, J.; Wang, T.; Zerlanko, B.J.; FitzGerald, T.J.; Jiang, Z.; Birbe, R.; et al. Integrin αvβ6 promotes an osteolytic program in cancer cells by upregulating MMP2. Cancer Res. 2014, 74, 1598–1608. [Google Scholar] [CrossRef]
- De, S.; Razorenova, O.; McCabe, N.P.; O’Toole, T.; Qin, J.; Byzova, T.V. VEGF-integrin interplay controls tumor growth and vascularization. Proc. Natl. Acad. Sci. USA 2005, 102, 7589–7594. [Google Scholar] [CrossRef]
- Quaglia, F.; Krishn, S.R.; Sossey-Alaoui, K.; Rana, P.S.; Pluskota, E.; Park, P.H.; Shields, C.D.; Lin, S.; McCue, P.; Kossenkov, A.V.; et al. The NOGO receptor NgR2, a novel αVβ3 integrin effector, induces neuroendocrine differentiation in prostate cancer. Sci. Rep. 2022, 12, 18879. [Google Scholar] [CrossRef]
- Quaglia, F.; Krishn, S.R.; Wang, Y.; Goodrich, D.W.; McCue, P.; Kossenkov, A.V.; Mandigo, A.C.; Knudsen, K.E.; Weinreb, P.H.; Corey, E.; et al. Differential expression of αVβ3 and αVβ6 integrins in prostate cancer progression. PLoS ONE 2021, 16, e0244985. [Google Scholar] [CrossRef]
- Krishn, S.R.; Garcia, V.; Naranjo, N.M.; Quaglia, F.; Shields, C.D.; Harris, M.A.; Kossenkov, A.V.; Liu, Q.; Corey, E.; Altieri, D.C.; et al. Small extracellular vesicle-mediated ITGB6 siRNA delivery downregulates the αVβ6 integrin and inhibits adhesion and migration of recipient prostate cancer cells. Cancer Biol. Ther. 2022, 23, 173–185. [Google Scholar] [CrossRef]
- Toth, R.K.; Tran, J.D.; Muldong, M.T.; Nollet, E.A.; Schulz, V.V.; Jensen, C.C.; Hazlehurst, L.A.; Corey, E.; Durden, D.; Jamieson, C.; et al. Hypoxia-induced PIM kinase and laminin-activated integrin α6 mediate resistance to PI3K inhibitors in bone-metastatic CRPC. Am. J. Clin. Exp. Urol. 2019, 7, 297–312. [Google Scholar]
- Wu, Q.; Kohli, M.; Bergen, H.R., 3rd; Cheville, J.C.; Karnes, R.J.; Cao, H.; Young, C.Y.; Tindall, D.J.; McNiven, M.A.; Donkena, K.V. Preclinical evaluation of the supercritical extract of azadirachta indica (neem) leaves in vitro and in vivo on inhibition of prostate cancer tumor growth. Mol. Cancer Ther. 2014, 13, 1067–1077. [Google Scholar] [CrossRef]
- Kallergi, G.; Mavroudis, D.; Georgoulias, V.; Stournaras, C. Phosphorylation of FAK, PI-3K, and impaired actin organization in CK-positive micrometastatic breast cancer cells. Mol. Med. 2007, 13, 79–88. [Google Scholar] [CrossRef]
- Hecker, T.P.; Grammer, J.R.; Gillespie, G.Y.; Stewart, J., Jr.; Gladson, C.L. Focal adhesion kinase enhances signaling through the Shc/extracellular signal-regulated kinase pathway in anaplastic astrocytoma tumor biopsy samples. Cancer Res. 2002, 62, 2699–2707. [Google Scholar] [PubMed]
- Rajendran, M.; Thomes, P.; Zhang, L.; Veeramani, S.; Lin, M.F. p66Shc--a longevity redox protein in human prostate cancer progression and metastasis: p66Shc in cancer progression and metastasis. Cancer Metastasis Rev. 2010, 29, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Veeramani, S.; Yuan, T.C.; Lin, F.F.; Lin, M.F. Mitochondrial redox signaling by p66Shc is involved in regulating androgenic growth stimulation of human prostate cancer cells. Oncogene 2008, 27, 5057–5068. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Kumar, S.; Rajendran, M.; Alam, S.M.; Lin, F.F.; Cheng, P.W.; Lin, M.F. Steroids up-regulate p66Shc longevity protein in growth regulation by inhibiting its ubiquitination. PLoS ONE 2011, 6, e15942. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Chen, Y.F.; Yang, Y.S.H.; Huang, H.M.; Lee, S.Y.; Shih, Y.J.; Li, Z.L.; Whang-Peng, J.; Lin, H.Y.; Davis, P.J. The power of heteronemin in cancers. J. Biomed. Sci. 2022, 29, 41. [Google Scholar] [CrossRef]
- Davis, P.J.; Mousa, S.A.; Cody, V.; Tang, H.Y.; Lin, H.Y. Small molecule hormone or hormone-like ligands of integrin αVβ3: Implications for cancer cell behavior. Horm. Cancer 2013, 4, 335–342. [Google Scholar] [CrossRef]
- Schütz, F.; Stefanovic, S.; Mayer, L.; von Au, A.; Domschke, C.; Sohn, C. PD-1/PD-L1 Pathway in Breast Cancer. Oncol. Res. Treat. 2017, 40, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Hudson, K.; Cross, N.; Jordan-Mahy, N.; Leyland, R. The Extrinsic and Intrinsic Roles of PD-L1 and Its Receptor PD-1: Implications for Immunotherapy Treatment. Front. Immunol. 2020, 11, 568931. [Google Scholar] [CrossRef] [PubMed]
- Tung, N.; Garber, J.E.; Hacker, M.R.; Torous, V.; Freeman, G.J.; Poles, E.; Rodig, S.; Alexander, B.; Lee, L.; Collins, L.C.; et al. Prevalence and predictors of androgen receptor and programmed death-ligand 1 in BRCA1-associated and sporadic triple-negative breast cancer. NPJ Breast Cancer 2016, 2, 16002. [Google Scholar] [CrossRef]
- Chatterjee, S.; Chatterjee, A.; Jana, S.; Dey, S.; Roy, H.; Das, M.K.; Alam, J.; Adhikary, A.; Chowdhury, A.; Biswas, A.; et al. Transforming growth factor beta orchestrates PD-L1 enrichment in tumor-derived exosomes and mediates CD8 T-cell dysfunction regulating early phosphorylation of TCR signalome in breast cancer. Carcinogenesis 2021, 42, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Hua, Y.; Qiu, H.; Hao, J.; Zou, K.; Li, Z.; Hu, S.; Guo, P.; Chen, M.; Sui, S.; et al. PD-L1 promotes tumor growth and progression by activating WIP and β-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis. 2020, 11, 506. [Google Scholar] [CrossRef]
- Huang, T.Y.; Chang, T.C.; Chin, Y.T.; Pan, Y.S.; Chang, W.J.; Liu, F.C.; Hastuti, E.D.; Chiu, S.J.; Wang, S.H.; Changou, C.A.; et al. NDAT Targets PI3K-Mediated PD-L1 Upregulation to Reduce Proliferation in Gefitinib-Resistant Colorectal Cancer. Cells 2020, 9, 1830. [Google Scholar] [CrossRef]
- Lotfinejad, P.; Kazemi, T.; Safaei, S.; Amini, M.; Roshani Asl, E.; Baghbani, E.; Sandoghchian Shotorbani, S.; Jadidi Niaragh, F.; Derakhshani, A.; Abdoli Shadbad, M.; et al. PD-L1 silencing inhibits triple-negative breast cancer development and upregulates T-cell-induced pro-inflammatory cytokines. Biomed. Pharm. 2021, 138, 111436. [Google Scholar] [CrossRef]
- Soliman, H.; Khalil, F.; Antonia, S. PD-L1 expression is increased in a subset of basal type breast cancer cells. PLoS ONE 2014, 9, e88557. [Google Scholar] [CrossRef]
- Mittendorf, E.A.; Philips, A.V.; Meric-Bernstam, F.; Qiao, N.; Wu, Y.; Harrington, S.; Su, X.; Wang, Y.; Gonzalez-Angulo, A.M.; Akcakanat, A.; et al. PD-L1 expression in triple-negative breast cancer. Cancer Immunol. Res. 2014, 2, 361–370. [Google Scholar] [CrossRef]
- Ma, P.; Jin, X.; Fan, Z.; Wang, Z.; Yue, S.; Wu, C.; Chen, S.; Wu, Y.; Chen, M.; Gu, D.; et al. Super-enhancer receives signals from the extracellular matrix to induce PD-L1-mediated immune evasion via integrin/BRAF/TAK1/ERK/ETV4 signaling. Cancer Biol. Med. 2021, 19, 669–684. [Google Scholar] [CrossRef]
- Malenica, I.; Adam, J.; Corgnac, S.; Mezquita, L.; Auclin, E.; Damei, I.; Grynszpan, L.; Gros, G.; de Montpréville, V.; Planchard, D.; et al. Integrin-α(V)-mediated activation of TGF-β regulates anti-tumour CD8 T cell immunity and response to PD-1 blockade. Nat. Commun. 2021, 12, 5209. [Google Scholar] [CrossRef] [PubMed]
- Hanamura, T.; Kitano, S.; Kagamu, H.; Yamashita, M.; Terao, M.; Okamura, T.; Kumaki, N.; Hozumi, K.; Iwamoto, T.; Honda, C.; et al. Expression of hormone receptors is associated with specific immunological profiles of the breast cancer microenvironment. Breast Cancer Res. 2023, 25, 13. [Google Scholar] [CrossRef] [PubMed]
- Gevensleben, H.; Dietrich, D.; Golletz, C.; Steiner, S.; Jung, M.; Thiesler, T.; Majores, M.; Stein, J.; Uhl, B.; Müller, S.; et al. The Immune Checkpoint Regulator PD-L1 Is Highly Expressed in Aggressive Primary Prostate Cancer. Clin. Cancer Res. 2016, 22, 1969–1977. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Wu, H.; Yao, Y.; Li, R. The expression of programmed death-ligand 1 in patients with invasive breast cancer. Gland. Surg. 2020, 9, 2106–2115. [Google Scholar] [CrossRef]
- Chartier, S.; Brochard, C.; Martinat, C.; Coussy, F.; Feron, J.G.; Kirova, Y.; Cottu, P.; Marchiò, C.; Vincent-Salomon, A. TROP2, androgen receptor, and PD-L1 status in histological subtypes of high-grade metaplastic breast carcinomas. Histopathology 2023, 82, 664–671. [Google Scholar] [CrossRef]
- Xu, F.F.; Sun, H.M.; Fang, R.P.; Zhang, L.; Shi, H.; Wang, X.; Fu, X.L.; Li, X.M.; Shi, X.H.; Wu, Y.; et al. The modulation of PD-L1 induced by the oncogenic HBXIP for breast cancer growth. Acta Pharm. Sin. 2022, 43, 429–445. [Google Scholar] [CrossRef]
Receptor | Cancer Type | Functions | Reference |
---|---|---|---|
AR | Prostate cancer | 1. To form a ligand–AR complex and to control gene expression 2. To stimulate the proliferation of prostate cancer cells | [12] |
ERα | ER-positive breast cancer | To stimulate the proliferation of ER-positive breast cancer cells | [9] |
Integrin αv | Prostate cancer | To regulate tumor cell migration and growth | [13] |
Integrin β1 | Hepatocellular carcinoma | To induce cell adhesion through PI3K/AKT signaling pathway | [14] |
Integrin β1C | Prostate cancer | To be correlated with prostate cancer progression | [15] |
Integrin α2 | Prostate cancer | To regulate metastasis mediated by adhesion to ColI through RANKL/RANK signaling | [16] |
Integrin α2β1 | Periosteum-derived progenitor cells | To involve cancer cell migration | [17] |
Prostate cancer | To regulate cancer progression | [18] | |
To be controlled its expression by AR | [19] | ||
Integrin α3 | Prostate cancer | To regulate tumor cell growth | [13] |
Integrin α3β1 | Prostate cancer | To repress cell proliferation and EMT in prostate cancer by CD151 | [20] |
Integrin α5β1 | Prostate cancer | To promote prostate cancer growth | [21] |
Integrin α6β1 | Prostate cancer | To promote the survival of CRPC cells selectively on laminin through the induction of autophagy and mitophagy | [22] |
Integrin α6β4 | Prostate cancer | To be involved in invasion | [23] |
To promote the survival of cancer cells | [24] | ||
To repress cell proliferation and EMT by CD151 | [20] | ||
To promote an osteolytic program in cancer cells by upregulating MMP2 | [25] | ||
Integrin αvβ3 | ER-negative breast cancer | To stimulate proliferation of ER-negative breast cancer cells | [10] |
Breast cancer | To regulate cell proliferation | [9] | |
Prostate cancer | To regulate cell proliferation through the p66Shc/VEGF pathway | [26] | |
To induce neuroendocrine differentiation through NOGO receptor NgR2 | [27] | ||
Neuroendocrine prostate cancer | To promote cancer metastasis | [28] | |
Integrin αvβ6 | Prostate cancer | To promote an osteolytic program in cancer cells by upregulating MMP2 | [25] |
To induce cell adhesion and migration | [29] | ||
Castration-resistant prostate cancer | To promote cancer cell survival | [24] | |
To promote survival and resistance to PI3K inhibition | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, C.-C.; Yang, Y.-C.S.H.; Chen, Y.-F.; Huang, L.-Y.; Yang, Y.-N.; Lee, S.-Y.; Wang, W.-L.; Lee, H.-L.; Whang-Peng, J.; Lin, H.-Y.; et al. Integrins and Actions of Androgen in Breast Cancer. Cells 2023, 12, 2126. https://doi.org/10.3390/cells12172126
Tsai C-C, Yang Y-CSH, Chen Y-F, Huang L-Y, Yang Y-N, Lee S-Y, Wang W-L, Lee H-L, Whang-Peng J, Lin H-Y, et al. Integrins and Actions of Androgen in Breast Cancer. Cells. 2023; 12(17):2126. https://doi.org/10.3390/cells12172126
Chicago/Turabian StyleTsai, Chung-Che, Yu-Chen S. H. Yang, Yi-Fong Chen, Lin-Yi Huang, Yung-Ning Yang, Sheng-Yang Lee, Wen-Long Wang, Hsin-Lun Lee, Jacqueline Whang-Peng, Hung-Yun Lin, and et al. 2023. "Integrins and Actions of Androgen in Breast Cancer" Cells 12, no. 17: 2126. https://doi.org/10.3390/cells12172126
APA StyleTsai, C.-C., Yang, Y.-C. S. H., Chen, Y.-F., Huang, L.-Y., Yang, Y.-N., Lee, S.-Y., Wang, W.-L., Lee, H.-L., Whang-Peng, J., Lin, H.-Y., & Wang, K. (2023). Integrins and Actions of Androgen in Breast Cancer. Cells, 12(17), 2126. https://doi.org/10.3390/cells12172126