Ischemic Stroke Risk Associated with Mitochondrial Haplogroup F in the Asian Population
<p>HIF-1α expressions in different cybrids under hypoxia-ischemia. Comparison of HIF-1α expression under hypoxic-ischemic conditions in cybrids harboring common mitochondrial haplogroups found in the ethnic Chinese population (B4, B5, D4, D5, F1, F2, N9). The 143B cybrid was used to represent the Caucasian population. Actin was used as a loading control. Data represent the mean ± SD of at least three independent experiments (<span class="html-italic"><sup>#</sup> p</span> < 0.005). N was used to represent normoxic and H to represent the hypoxic condition for 24 h.</p> "> Figure 2
<p>Metabolic profile of different cybrids after hypoxia-ischemia. Comparison of ATP production (<b>A</b>), pyruvate dehydrogenase (PDH) activity (<b>B</b>), lactate dehydrogenase (LDH) activity (<b>C</b>) under hypoxic-ischemic condition in cybrid cells harboring stroke-susceptible haplogroup F and stroke-resistant haplogroup B. Measurements of oxygen consumption rate (OCR) under normoxic (<b>D</b>) and hypoxic (<b>E</b>) conditions, and comparison of the fundamental OCR parameters under normoxic (<b>G</b>) and hypoxic (<b>H</b>) conditions, in cybrid cells harboring stroke-susceptible haplogroup F and stroke-resistant haplogroup B. (<b>F</b>) represents the fundamental parameters of mitochondrial OCR including basal respiration (a), coupled respiration (b), uncouple respiration (c), maximal respiration (d), and spare respiratory capacity (e). Mitochondrial ATP levels, PDH and LDH activity were determined by the colorimetric assay kit. Data represent the mean ±SD of at least three independent experiments (* <span class="html-italic">p</span> < 0.05; <sup>#</sup> <span class="html-italic">p</span> < 0.005). N was used to represent normoxic and H to represent hypoxic condition. OCR examined by the Seahorse XF24 analyzer in the absence or presence of oligomycin (1 μM), FCCP (250 nM), and rotenone (1 μM) under normoxic or hypoxic conditions, data obtained by counting 1 × 10<sup>5</sup> cells of cybrids.</p> "> Figure 3
<p>Mitochondrial profile of different cybrids after hypoxia-ischemia. Comparison of mitochondrial ROS (<b>A</b>), mitochondrial transmembrane potential (<b>B</b>), cytosolic calcium levels (<b>C</b>), and distribution of mitochondrial calcium (<b>D</b>) under hypoxic-ischemic conditions in cybrid cells harboring stroke-susceptible haplogroup F and stroke-resistant haplogroup B. MitoSOX-based flow cytometry was used for detecting mitochondrial ROS. The fluorescence of mitochondrial transmembrane potential was measured by Rhodamine 123. The mobilization of distinct pools of calcium between cytosolic and mitochondria, stained with Fura2-AM and Rhod-2 AM, respectively, were measured by flow cytometry analysis. Data represent the mean ± SD of at least three independent experiments (<span class="html-italic">* p</span> < 0.05). N was used to represent normoxic and H to represent the hypoxic condition.</p> "> Figure 4
<p>The expression of inflammatory markers and extracellular matrix in different cybrids after hypoxia-ischemia. Comparisons of inflammatory cytokines in cybrid cells harboring stroke-susceptible haplogroup F and resistant haplogroup B. Western blot analysis shows hypoxia induced protein expression of IL-1β (<b>A</b>), IL-6 (<b>B</b>), TNF-α (<b>C</b>), and MMP-9 (<b>D</b>). Actin was used as loading controls. Data represent the mean ± SD of at least three independent experiments (<span class="html-italic">* p</span> < 0.05; <sup>#</sup> <span class="html-italic">p</span> < 0.005). N was used to represent normoxic and H to represent the hypoxic condition.</p> "> Figure 5
<p>Gene expression profiling of F1 and F2 cybrids compared to B4 and B5 cybrids using the RNASeq technology. The Venn diagram illustrates the number of differentially expressed genes (DEGs) between hypoxic-ischemic for 24 h and normoxic conditions in cybrids harboring haplogroups F1, F2, B4, and B5. The two genes specific to stroke-susceptible haplogroup F1 were ANGPLT4 and FAP. FAP: Fibroblast activation protein alpha; ANGPLT4: Angiopoietin like 4; FPKM: Fragments Per Kilobase of transcript per Million mapped reads; <span class="html-italic">q</span>-value, false discovery rate (FDR) adjusted <span class="html-italic">p</span>-value.</p> "> Figure 6
<p>ANGPTL4 expression in different cybrids under hypoxia-ischemia and the relationship with HIF-1α. Comparison of the knockdown effect of HIF-1α siRNA on expressions of HIF-1α and ANGPTL4 in cybrid cells harboring stroke-susceptible haplogroup F and resistant haplogroup B. Baseline expression of HIF-1α (<b>A</b>) and ANGPTL4 (<b>C</b>) and effects of HIF-1α siRNA on expressions of HIF-1α (<b>B</b>) and ANGPTL4 (<b>D</b>) before and after hypoxia-ischemia, as assessed by Western blot analysis. Actin was used as a loading control. Data represent the mean ±SD of at least three independent experiments (* <span class="html-italic">p</span> < 0.05; <span class="html-italic"><sup>#</sup> p</span> < 0.005). N was used to represent normoxic and H to represent the hypoxic condition.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Study
2.1.1. Subject Recruitment for Association Study of Mitochondrial Haplogroups and Ischemic Stroke
2.1.2. Methods for Determination of Mitochondrial Haplogroup
2.1.3. Subject Recruitment for Study of Serum ANGPTL4 Levels in Acute Ischemic Stroke
2.1.4. Methods for Determination of Serum ANGPTL4 Levels
2.2. Cellular Study
2.2.1. Cytoplasmic Hybrid (Cybrid) Cell Culture
2.2.2. Hypoxic-Ischemic Treatment
2.2.3. RNAseq Study and Analysis
2.2.4. Western Blot for HIF-1α, IL-1β, IL-6, TNF-α, MMP-2, MMP-9, ANGPTL4
2.2.5. Energy Metabolism Assay for ATP, PDH, LDH, and Oxygen Consumption Rate
2.2.6. Flow Cytometry Analysis for ROS, Calcium, and Membrane Potential
2.3. Statistical Analysis
3. Results
3.1. Clinical Genetic Study
Notable Associations between Specific mtDNA Haplogroups and Ischemic Stroke
3.2. Cellular Function and Protein Expression Study
3.2.1. Inferior HIF-1α Response to Hypoxia-Ischemia in Specific Haplogroup Cybrids
3.2.2. Notable Alterations of Metabolic Profiles in Specific Haplogroup Cybrids after Hypoxia-Ischemia
3.2.3. Notable Alterations of Mitochondrial Function Profiles in Specific Haplogroup Cybrids after Hypoxia-Ischemia
3.2.4. Elevated Intracellular Calcium Levels in Specific Haplogroup Cybrids after Hypoxia-Ischemia
3.2.5. Discrepancies in Levels of IL-1β, IL6, TNF-α, and MMP-2 among Different Haplogroup Cybrids after Hypoxia-Ischemia
3.2.6. RNAseq Study Identified Increased Expression of ANGPTL4 in Haplogroup F1 Cybrid Cells in Response to Hypoxia-Ischemia
3.2.7. Elevation of ANGPTL4 Serum Levels in Acute Ischemic Stroke Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lusis, A.J. Atherosclerosis. Nature 2000, 407, 233–241. [Google Scholar] [CrossRef]
- Madamanchi, N.R.; Runge, M.S. Mitochondrial dysfunction in atherosclerosis. Circ. Res. 2007, 100, 460–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, E.E.; Brunner, S.M.; Mayr, J.A.; Stanger, O.; Sperl, W.; Kofler, B. Functional differences between mitochondrial haplogroup T and haplogroup H in HEK293 cybrid cells. PLoS ONE 2012, 7, e52367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishigaki, Y.; Fuku, N.; Tanaka, M. Mitochondrial haplogroups associated with lifestyle-related diseases and longevity in the Japanese population. Geriatr. Gerontol. Int. 2010, 10 (Suppl. 1), S221–S235. [Google Scholar] [CrossRef] [PubMed]
- Liou, C.W.; Chen, J.B.; Tiao, M.M.; Weng, S.W.; Huang, T.L.; Chuang, J.H.; Chen, S.D.; Chuang, Y.C.; Lee, W.C.; Lin, T.K.; et al. Mitochondrial DNA coding and control region variants as genetic risk factors for type 2 diabetes. Diabetes 2012, 61, 2642–2651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, A.; Fonseca, B.V.; Krug, T.; Manso, H.; Gouveia, L.; Albergaria, I.; Gaspar, G.; Correia, M.; Viana-Baptista, M.; Simões, R.M.; et al. Mitochondrial haplogroup H1 is protective for ischemic stroke in Portuguese patients. BMC Med. Genet. 2008, 9, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinnery, P.F.; Elliott, H.R.; Syed, A.; Rothwell, P.M.; Oxford Vascular Study. Mitochondrial DNA haplogroups and risk of transient ischaemic attack and ischaemic stroke: A genetic association study. Lancet Neurol. 2010, 9, 498–503. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Wang, Q.; Shi, Y.; Fan, Y.; Zheng, H.X.; Song, G.; Feng, Q.; Zheng, H.; He, Y. Mitochondrial DNA haplogroup D4b is a protective factor for ischemic stroke in Chinese Han population. Mol. Genet. Genomics 2014, 289, 1241–1246. [Google Scholar] [CrossRef]
- Cai, B.; Zhang, Z.; Liu, K.; Fan, W.; Zhang, Y.; Xie, X.; Dai, M.; Cao, L.; Bai, W.; Du, J.; et al. Mitochondrial DNA haplogroups and short-term neurological outcomes of ischemic stroke. Sci. Rep. 2015, 5, 9864. [Google Scholar] [CrossRef] [Green Version]
- Nishigaki, Y.; Yamada, Y.; Fuku, N.; Matsuo, H.; Segawa, T.; Watanabe, S.; Kato, K.; Yokoi, K.; Yamaguchi, S.; Nozawa, Y.; et al. Mitochondrial haplogroup A is a genetic risk factor for atherothrombotic cerebral infarction in Japanese females. Mitochondrion 2007, 7, 72–79. [Google Scholar] [CrossRef]
- Tanaka, M.; Cabrera, V.M.; González, A.M.; Larruga, J.M.; Takeyasu, T.; Fuku, N.; Guo, L.J.; Hirose, R.; Fujita, Y.; Kurata, M.; et al. Mitochondrial genome variation in eastern Asia and the peopling of Japan. Genome Res. 2004, 14, 1832–1850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Oven, M.; Kayser, M. Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum. Mutat. 2009, 30, E386–E394. [Google Scholar] [CrossRef] [PubMed]
- Itoh, Y.; Mizuki, N.; Shimada, T.; Azuma, F.; Itakura, M.; Kashiwase, K.; Kikkawa, E.; Kulski, J.K.; Satake, M.; Inoko, H. High-throughput DNA typing of HLA-A, -B, -C, and -DRB1 loci by a PCR-SSOP-Luminex method in the Japanese population. Immunogenetics 2005, 57, 717–729. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.G.; Kong, Q.P.; Bandelt, H.J.; Kivisild, T.; Zhang, Y.P. Phylogeographic differentiation of mitochondrial DNA in Han Chinese. Am. J. Hum. Genet. 2002, 70, 635–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, M.P.; Attardi, G. Human cells lacking mtDNA: Repopulation with exogenous mitochondria by complementation. Science 1989, 246, 500–503. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.K.; Lin, H.Y.; Chen, S.D.; Chuang, Y.C.; Chuang, J.H.; Wang, P.W.; Huang, S.T.; Tiao, M.M.; Chen, J.B.; Liou, C.W. The creation of cybrids harboringmitochondrial haplogroups in the Taiwanese population of ethnic chinese background: An extensive in vitro tool for the study of mitochondrial genomic variations. Oxid. Med. Cell. Longev. 2012, 2012, 824275. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.W.; Tsai, M.H.; Lin, T.K.; Tiao, M.M.; Wang, P.W.; Chuang, J.H.; Chen, S.D.; Liou, C.W. mtDNA as a Mediator for Expression of Hypoxia-Inducible Factor 1alpha and ROS in Hypoxic Neuroblastoma Cells. Int. J. Mol. Sci. 2017, 18. [Google Scholar] [CrossRef] [Green Version]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef] [Green Version]
- Kasivisvanathan, V.; Shalhoub, J.; Lim, C.S.; Shepherd, A.C.; Thapar, A.; Davies, A.H. Hypoxia-inducible factor-1 in arterial disease: A putative therapeutic target. Curr. Vasc. Pharmacol. 2011, 9, 333–349. [Google Scholar] [CrossRef]
- Pivovarova, N.B.; Andrews, S.B. Calcium-dependent mitochondrial function and dysfunction in neurons. FEBS J. 2010, 277, 3622–3636. [Google Scholar] [CrossRef] [Green Version]
- Baerts, L.; Brouns, R.; Kehoe, K.; Verkerk, R.; Engelborghs, S.; De Deyn, P.P.; Hendriks, D.; De Meester, I. Acute Ischemic Stroke Severity, Progression, and Outcome Relate to Changes in Dipeptidyl Peptidase IV and Fibroblast Activation Protein Activity. Transl. Stroke Res. 2017, 8, 157–164. [Google Scholar] [CrossRef] [PubMed]
- He, X.W.; Shen, Y.G.; Zhu, M.; Hu, X.F.; Zheng, Z.; Liu, P.; Li, C.; Zhu, F.; Jin, X.P. Angiopoietin-like protein 4 serum levels and gene polymorphisms are associated with large artery atherosclerotic stroke. J. Neurol. Sci. 2016, 362, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Levin, L.; Zhidkov, I.; Gurman, Y.; Hawlena, H.; Mishmar, D. Functional Recurrent Mutations in the Human Mitochondrial Phylogeny: Dual Roles in Evolution and Disease. Genome Biol. Evol. 2013, 5, 876–890. [Google Scholar] [CrossRef] [PubMed]
- Hill, C.; Soares, P.; Mormina, M.; Macaulay, V.; Meehan, W.; Blackburn, J.; Clarke, D.; Raja, J.M.; Ismail, P.; Bulbeck, D.; et al. Phylogeography and Ethnogenesis of Aboriginal Southeast Asians. Mol. Biol. Evol. 2006, 23, 2480–2491. [Google Scholar] [CrossRef] [Green Version]
- Wen, B.; Li, H.; Gao, S.; Mao, X.; Gao, Y.; Li, F.; Zhang, F.; He, Y.; Dong, Y.; Zhang, Y.; et al. Genetic structure of Hmong-Mien speaking populations in East Asia as revealed by mtDNA lineages. Mol. Biol. Evol. 2005, 22, 725–734. [Google Scholar] [CrossRef] [Green Version]
- Xing, J.; Lu, J. HIF-1α Activation Attenuates IL-6 and TNF-α Pathways in Hippocampus of Rats Following Transient Global Ischemia. Cell Physiol. Biochem. 2016, 39, 511–520. [Google Scholar] [CrossRef]
- Bouleti, C.; Mathivet, T.; Coqueran, B.; Serfaty, J.M.; Lesage, M.; Berland, E.; Ardidie-Robouant, C.; Kauffenstein, G.; Henrion, D.; Lapergue, B.; et al. Protective effects of angiopoietin-like 4 on cerebrovascular and functional damages in ischaemic stroke. Eur. Heart J. 2013, 34, 3657–3668. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Li, S.Y.; Ji, F.Y.; Zhao, Y.F.; Zhong, Y.; Lv, X.J.; Wu, X.L.; Qian, G.S. Role of Angptl4 in vascular permeability and inflammation. Inflamm. Res. 2014, 63, 13–22. [Google Scholar] [CrossRef]
- Zhu, P.; Goh, Y.Y.; Chin, H.F.; Kersten, S.; Tan, N.S. Angiopoietin-like 4: A decade of research. Biosci. Rep. 2012, 32, 211–219. [Google Scholar] [CrossRef]
- Xu, L.; Guo, Z.N.; Yang, Y.; Xu, J.; Burchell, S.R.; Tang, J.; Zhang, J.; Xu, J.; Zhang, J.H. Angiopoietin-like 4: A double-edged sword in atherosclerosis and ischemic stroke? Exp. Neurol. 2015, 272, 61–66. [Google Scholar] [CrossRef]
- Libby, P. Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2045–2051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Planas, A.M.; Sole, S.; Justicia, C. Expression and activation of matrix metalloproteinase-2 and -9 in rat brain after transient focal cerebral ischemia. Neurobiol. Dis. 2001, 8, 834–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Rosenberg, G.A. Matrix metalloproteinases as therapeutic targets for stroke. Brain Res. 2015, 1623, 30–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gasche, Y.; Fujimura, M.; Morita-Fujimura, Y.; Copin, J.C.; Kawase, M.; Massengale, J.; Chan, P.H. Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice: A possible role in blood-brain barrier dysfunction. J. Cereb. Blood Flow Metab. 1999, 19, 1020–1028. [Google Scholar] [CrossRef] [Green Version]
- Gouriou, Y.; Demaurex, N.; Bijlenga, P.; De Marchi, U. Mitochondrial calcium handling during ischemia-induced cell death in neurons. Biochimie 2011, 93, 2060–2067. [Google Scholar] [CrossRef] [Green Version]
Haplogroup | Stroke (n = 830) | Control (n = 966) | Total (n = 1796) | Multivariate | |
---|---|---|---|---|---|
% (n) | % (n) | % (n) | Odds Ratio (95% CI) | p | |
Major haplogroup | |||||
A | 5.1 (42) | 4.4 (42) | 4.6 (82) | 1.16 (0.74–1.81) | 0.529 |
B | 20.2 (168) | 24.9 (240) | 22.7 (408) | 0.77 (0.61–0.97) | 0.024 |
C | 2.5 (21) | 2.6 (25) | 2.6 (46) | 0.93 (0.51–1.69) | 0.806 |
D | 17.6 (146) | 18.4 (178) | 18.0 (324) | 0.94 (0.73–1.20) | 0.599 |
E | 2.0 (17) | 1.9 (18) | 2.0 (35) | 1.31 (0.66–2.60) | 0.441 |
F | 24.8 (206) | 18.6 (180) | 21.5 (386) | 1.44 (1.14–1.82) | 0.002 * |
G | 2.5 (21) | 2.5 (24) | 2.5 (45) | 1.10 (0.60–2.03) | 0.751 |
M7 | 11.8 (98) | 12.6 (122) | 12.3 (220) | 0.91 (0.68–1.22) | 0.544 |
M8 | 4.7 (39) | 3.9 (38) | 4.4 (79) | 1.27 (0.80–2.03) | 0.312 |
N9 | 3.5 (29) | 2.8 (27) | 3.1 (56) | 1.28 (0.77–2.11) | 0.289 |
Others N | 1.2 (10) | 1.8 (17) | 1.5 (27) | 0.74 (0.33–1.64) | 0.460 |
Others M | 4.0 (33) | 5.7 (55) | 4.9 (88) | 0.61 (0.39–0.96) | 0.031 |
Sub-haplogroup | |||||
B4 | 12.9 (107) | 16.4 (158) | 14.8 (265) | 0.76 (0.58–0.99) | 0.039 |
B5 | 4.7 (39) | 7.1 (69) | 6.0 (108) | 0.64 (0.43–0.96) | 0.031 |
D4 | 10.1 (84) | 10.9 (105) | 10.5 (189) | 0.94 (0.69–1.28) | 0.676 |
D5 | 7.1 (59) | 7.3 (70) | 7.2 (129) | 0.94 (0.65–1.36) | 0.748 |
F1 | 14.0 (116) | 8.6 (83) | 11.1 (199) | 1.72 (1.27–2.34) | 0.001 * |
F2 | 8.1 (67) | 5.1 (49) | 6.5 (116) | 1.68 (1.13–2.48) | 0.010 |
M7b | 6.5 (54) | 7.4 (71) | 7.0 (125) | 0.87 (0.60–1.27) | 0.461 |
M7c | 4.9 (41) | 4.9 (47) | 4.9 (88) | 1.00 (0.64–1.55) | 0.997 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, M.-H.; Kuo, C.-W.; Lin, T.-K.; Ho, C.-J.; Wang, P.-W.; Chuang, J.-H.; Liou, C.-W. Ischemic Stroke Risk Associated with Mitochondrial Haplogroup F in the Asian Population. Cells 2020, 9, 1885. https://doi.org/10.3390/cells9081885
Tsai M-H, Kuo C-W, Lin T-K, Ho C-J, Wang P-W, Chuang J-H, Liou C-W. Ischemic Stroke Risk Associated with Mitochondrial Haplogroup F in the Asian Population. Cells. 2020; 9(8):1885. https://doi.org/10.3390/cells9081885
Chicago/Turabian StyleTsai, Meng-Han, Chung-Wen Kuo, Tsu-Kung Lin, Chen-Jui Ho, Pei-Wen Wang, Jiin-Haur Chuang, and Chia-Wei Liou. 2020. "Ischemic Stroke Risk Associated with Mitochondrial Haplogroup F in the Asian Population" Cells 9, no. 8: 1885. https://doi.org/10.3390/cells9081885
APA StyleTsai, M. -H., Kuo, C. -W., Lin, T. -K., Ho, C. -J., Wang, P. -W., Chuang, J. -H., & Liou, C. -W. (2020). Ischemic Stroke Risk Associated with Mitochondrial Haplogroup F in the Asian Population. Cells, 9(8), 1885. https://doi.org/10.3390/cells9081885