The Calcium-Sensing Receptor is A Marker and Potential Driver of Neuroendocrine Differentiation in Prostate Cancer
<p>Immunostaining for calcium-sensing receptor (CaSR) (<b>A</b>,<b>C</b>,<b>E</b>) and chromogranin (<b>B</b>,<b>D</b>,<b>F</b>) on sequential slides. Both markers are expressed in the same areas of normal prostate tissue (<b>A</b>,<b>B</b>, ×10; in inset ×40) and metastatic castration resistant prostate cancerv (MCRPC) (<b>C</b>,<b>D</b>, ×5; in inset ×40). In case of mixed neuroendocrine prostate cancer (NEPC), only the neuroendocrine (NE) component expressed both CaSR and chromogranin (<b>E</b>,<b>F</b>, ×5; in inset ×40). (<b>G</b>). Double immunostaining showing co-localization of CaSR and chromogranin in MCRPC. Cytoplasmic expression of chromogranin is shown as red; membranous staining of CaSR is shown as green. In some cells, CaSR was expressed without chromogranin staining (×60). (<b>H</b>). Kaplan-Meier overall survival in MCRPC patients, according to CaSR staining (<span class="html-italic">p</span> = 0.004).</p> "> Figure 2
<p>Neuroendocrine markers (<b>A</b>–<b>D</b>) in NCI-H660, PC3 and 22RV1 cell lines and Expression of CaSR (<b>E</b>). qPCR results (mean ± SEM) are expressed in 2<sup>-ΔΔCt</sup> and normalized to NCI-H660 cell line.</p> "> Figure 3
<p>Expression of CaSR and neuroendocrine markers in NCI-H660, PC3 and 22RV1 cell lines. Immunohistochemical staining on cell pellets: all markers are expressed in NCI-H660 and 22RV1 cell lines, with nevertheless a weak expression of chromogranin in 22RV1. In PC3 cells, while both CaSR and NSE are expressed, no staining was observed for chromogranin and synaptophysin.</p> "> Figure 4
<p>(<b>A</b>,<b>B</b>): Effects of CaSR inhibitor on the expression of NE markers in NCI-H660 and 22RV1. Cells were treated for 72 h (NCI-H660) or 24 h (22RV1) with a CaSR inhibitor, NPS-2143 at 1 µM (NCI-H660) or 300 nM (22RV1). (<b>C</b>): Effects of CaSR activator on the expression of NE markers in PC3. Cells were treated for 24 h with a CaSR activator, R-568 (10 µM) in presence of calcium (1.2 mM). qPCR results are normalized to control condition and are expressed as mean ± S.E.M. The statistical differences are indicated: *<span class="html-italic">p</span> < 0.05; **<span class="html-italic">p</span> < 0.01; ***<span class="html-italic">p</span> < 0.001 (Mann–Whitney). <span class="html-italic">n</span> = 3.</p> "> Figure 5
<p>(<b>A</b>). Effects of CaSR inhibition on the expression of NE markers in PC3 and 22RV1. Cells were transfected with a siRNA control (siCTRL) or directed against CaSR (siCaSR) for 48 h (qPCR analysis were performed 48 h post-transfection). Results are normalized to control condition and are expressed as mean ± S.E.M. The statistical differences are indicated: ***<span class="html-italic">p</span> < 0.001 (Mann–Whitney). <span class="html-italic">n</span> = 3. (<b>B</b>). Immunohistochemical expression of CaSR and the neuronal marker NSE in 22RV1 cells, transfected with either a siRNA control (siCRTL) or directed against CaSR (siCaSR) for 48 h. CaSR inhibition is confirmed by an absence of immunostaining, and led to a decrease in NSE expression, from focal to almost diffuse.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Prevalence of CaSR Expression and Correlation with Chromogranin Staining
2.2. Correlation of CaSR Expression with Proliferation and ERG Status. Association with ISUP Group and pTNM Stage in CLC
2.3. Prognostic Value of CaSR Staining
2.4. Neuroendocrine Profile of PCa Cell Lines and CaSR Expression
2.5. Pharmacological CaSR Regulators Induce Changes in NE Marker Expression
2.6. Downregulation of CaSR Reduces the Expression of Neuronal Markers in PC3 and Neuroendocrine Markers in 22RV1
3. Discussion
4. Materials and Methods
4.1. Patients and Samples
4.2. Immunohistochemistry on Tissue Micro-Array and Cell Lines
4.3. Cell Culture and Products
4.4. RNA Extraction and Quantitative Real Time PCR
4.5. Transfection Assays
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Mitrou, P.N.; Albanes, D.; Weinstein, S.J.; Pietinen, P.; Taylor, P.R.; Virtamo, J.; Leitzmann, M.F. A prospective study of dietary calcium, dairy products and prostate cancer risk (Finland). Int. J. Cancer 2007, 120, 2466–2473. [Google Scholar] [CrossRef] [PubMed]
- Rowland, G.W.; Schwartz, G.G.; John, E.M.; Ingles, S.A. Protective effects of low calcium intake and low calcium absorption vitamin D receptor genotype in the California Collaborative Prostate Cancer Study. Cancer Epidemiol. Biomark. Prev. 2013, 22, 16–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurahashi, N.; Inoue, M.; Iwasaki, M.; Sasazuki, S.; Tsugane, A.S. Japan Public Health Center-Based Prospective Study Group. Dairy product, saturated fatty acid, and calcium intake and prostate cancer in a prospective cohort of Japanese men. Cancer Epidemiol. Biomark. Prev. 2008, 17, 930–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovannucci, E.; Liu, Y.; Stampfer, M.J.; Willett, W.C. A prospective study of calcium intake and incident and fatal prostate cancer. Cancer Epidemiol. Biomark. Prev. 2006, 15, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Chalmers, S.B.; Monteith, G.R. ORAI channels and cancer. Cell Calcium 2018, 74, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Skrajnowska, D.; Bobrowska-Korczak, B.; Tokarz, A. Disorders of Mechanisms of Calcium Metabolism Control as Potential Risk Factors of Prostate Cancer. Curr. Med. Chem. 2017, 24, 4229–4244. [Google Scholar] [CrossRef]
- Hannan, F.M.; Kallay, E.; Chang, W.; Brandi, M.L.; Thakker, R.V. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat. Rev. Endocrinol. 2018, 15, 33–51. [Google Scholar] [CrossRef]
- Bernichtein, S.; Pigat, N.; Barry Delongchamps, N.; Boutillon, F.; Verkarre, V.; Camparo, P.; Reyes-Gomez, E.; Méjean, A.; Oudard, S.M.; Lepicard, E.M.; et al. Vitamin D3 Prevents Calcium-Induced Progression of Early-Stage Prostate Tumors by Counteracting TRPC6 and Calcium Sensing Receptor Upregulation. Cancer Res. 2017, 77, 355–365. [Google Scholar] [CrossRef] [Green Version]
- Epstein, J.I.; Amin, M.B.; Beltran, H.; Lotan, T.L.; Mosquera, J.M.; Reuter, V.E.; Robinson, B.D.; Troncoso, P.; Rubin, M.A. Proposed morphologic classification of prostate cancer with neuroendocrine differentiation. Am. J. Surg. Pathol. 2014, 38, 756–767. [Google Scholar] [CrossRef] [Green Version]
- Priemer, D.S.; Montironi, R.; Wang, L.; Williamson, S.R.; Lopez-Beltran, A.; Cheng, L. Neuroendocrine Tumors of the Prostate: Emerging Insights from Molecular Data and Updates to the 2016 World Health Organization Classification. Endocr. Pathol. 2016, 27, 123–135. [Google Scholar] [CrossRef]
- Mariot, P.; Vanoverberghe, K.; Lalevee, N.; Rossier, M.F.; Prevarskaya, N. Overexpression of an alpha 1H (Cav3.2) T-type calcium channel during neuroendocrine differentiation of human prostate cancer cells. J. Biol. Chem. 2002, 277, 10824–10833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gackière, F.; Bidaux, G.; Delcourt, P.; Van Coppenolle, F.; Katsogiannou, M.; Dewailly, E.; Bavencoffe, A.; Tran Van Chuoï-Mariot, M.; Mauroy, B.; Prevarskaya, N. CaV3.2 T-type calcium channels are involved in calcium-dependent secretion of neuroendocrine prostate cancer cells. J. Biol. Chem. 2008, 283, 10162–10173. [Google Scholar] [CrossRef] [Green Version]
- Gray, E.; Muller, D.; Squires, P.E.; Asare-Anane, H.; Huang, G.C.; Amiel, S.; Persaud, S.J.; Jones, P.M. Activation of the extracellular calcium-sensing receptor initiates insulin secretion from human islets of Langerhans: Involvement of protein kinases. J. Endocrinol. 2006, 190, 703–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, J.; Petersen, C.D.; Coy, D.H.; Jiang, J.K.; Thomas, C.J.; Pollak, M.R.; Wank, S.A. Calcium-sensing receptor is a physiologic multimodal chemosensor regulating gastric G-cell growth and gastrin secretion. Proc. Natl. Acad. Sci. USA 2010, 107, 17791–17796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lembrechts, R.; Brouns, I.; Schnorbusch, K.; Pintelon, I.; Kemp, P.J.; Timmermans, J.P.; Riccardi, D.; Adriaensen, D. Functional expression of the multimodal extracellular calcium-sensing receptor in pulmonary neuroendocrine cells. J. Cell Sci. 2013, 126, 4490–4501. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Liu, S.; Miller, R.T. Role of p115RhoGEF in the regulation of extracellular Ca(2+)-induced choline kinase activation and prostate cancer cell proliferation. Int. J. Cancer 2011, 128, 2833–2842. [Google Scholar] [CrossRef]
- Ahearn, T.U.; Tchrakian, N.; Wilson, K.M.; Lis, R.; Nuttall, E.; Sesso, H.D.; Loda, M.; Giovannucci, E.; Mucci, L.A.; Finn, S.; et al. Calcium-Sensing Receptor Tumor Expression and Lethal Prostate Cancer Progression. J. Clin. Endocrinol. Metab. 2016, 101, 2520–2527. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.L.; Madeb, R.; Bourne, P.; Lei, J.; Yang, X.; Tickoo, S.; Liu, Z.; Tan, D.; Cheng, L.; Hatem, F.; et al. Small cell carcinoma of the prostate: An immunohistochemical study. Am. J. Surg. Pathol. 2006, 30, 705–712. [Google Scholar] [CrossRef]
- Wang, W.; Epstein, J.I. Small cell carcinoma of the prostate. Am. J. Surg. Pathol. 2008, 32, 65–71. [Google Scholar] [CrossRef]
- Ather, M.H.; Abbas, F.; Faruqui, N.; Israr, M.; Pervez, S. Correlation of three immunohistochemically detected markers of neuroendocrine differentiation with clinical predictors of disease progression in prostate cancer. BMC Urol. 2008, 8–21. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Horiatis, D.; Pinski, J. Inhibitory effect of IL-6-induced neuroendocrine cells on prostate cancer cell proliferation. Prostate 2004, 61, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Mounir, Z.; Lin, F.; Lin, V.G.; Korn, J.M.; Yu, Y.; Valdez, R.; Aina, O.H.; Buchwalter, G.; Jaffe, A.B.; Korpal, M.; et al. TMPRSS2:ERG blocks neuroendocrine and luminal cell differentiation to maintain prostate cancer proliferation. Oncogene 2015, 34, 3815–3825. [Google Scholar] [CrossRef]
- Hirano, D.; Okada, Y.; Minei, S.; Takimoto, Y.; Nemoto, N. Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy. Eur. Urol. 2004, 45, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Wafa, L.A.; Palmer, J.; Fazli, L.; Hurtado-Coll, A.; Bell, R.H.; Nelson, C.C.; Gleave, M.E.; Cox, M.E.; Rennie, P.S. Comprehensive expression analysis of L-dopa decarboxylase and established neuroendocrine markers in neoadjuvant hormone-treated versus varying Gleason grade prostate tumors. Hum. Pathol. 2007, 38, 161–170. [Google Scholar] [CrossRef]
- Terry, S.; Maillé, P.; Baaddi, H.; Kheuang, L.; Soyeux, P.; Nicolaiew, N.; Ceraline, J.; Firlej, V.; Beltran, H.; Allory, Y. Cross modulation between the androgen receptor axis and protocadherin-PC in mediating neuroendocrine transdifferentiation and therapeutic resistance of prostate cancer. Neoplasia 2013, 15, 761–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conteduca, V.; Burgio, S.L.; Menna, C.; Carretta, E.; Rossi, L.; Bianchi, E.; Masini, C.; Amadori, D.; de Giorgi, U. Chromogranin A is a potential prognostic marker in prostate cancer patients treated with enzalutamide. Prostate 2014, 74, 1691–1696. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Wang, Y.; Chi, C.; Pan, J.; Xun, S.; Xin, Z.; Hu, J.; Zhou, L.; Dong, B.; Xue, W. Chromogranin A and neurone-specific enolase variations during the first 3 months of abiraterone therapy predict outcomes in patients with metastatic castration-resistant prostate cancer. BJU Int. 2017, 120, 226–232. [Google Scholar] [CrossRef] [Green Version]
- Komiya, A.; Yasuda, K.; Watanabe, A.; Fujuichi, Y.; Tsuzuki, T.; Fuse, H. The prognostic significance of loss of the androgen receptor and neuroendocrine differentiation in prostate biopsy specimens among castration-resistant prostate cancer patients. Mol. Clin. Oncol. 2013, 1, 257–262. [Google Scholar] [CrossRef] [Green Version]
- Fromont, G.; Rozet, F.; Cathelineau, X.; Ouzzane, A.; Doucet, L.; Fournier, G.; Cussenot, O. BCAR1 expression improves prediction of biochemical reccurence after radical prostatectomy. Prostate 2012, 72, 1359–1365. [Google Scholar] [CrossRef]
- Brennan, S.C.; Thiem, U.; Roth, S.; Aggarwal, A.; Fetahu, I.S.; Tennakoon, S.; Gomes, A.R.; Brandi, M.L.; Bruggeman, F.; Mentaverri, R.; et al. Calcium sensing receptor signalling in physiology and cancer. Biochim. Biophys. Acta 2013, 1833, 1732–1744. [Google Scholar] [CrossRef] [Green Version]
- Mihai, R.; Stevens, J.; McKinney, C.; Ibrahim, N.B. Expression of the calcium receptor in human breast cancer--a potential new marker predicting the risk of bone metastases. Eur. J. Surg. Oncol. 2006, 32, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Frees, S.; Breuksch, I.; Haber, T.; Bauer, H.K.; Chavez-Munoz, C.; Raven, P.; Moskalev, I.; Costa, N.D.; Tan, Z.; Daugaard, M.; et al. Calcium-sensing receptor (CaSR) promotes development of bone metastasis in renal cell carcinoma. Oncotarget 2018, 9, 15766–15779. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Schneider, A.; Datta, N.S.; McCauley, L.K. Extracellular calcium as a candidate mediator of prostate cancer skeletal metastasis. Cancer Res. 2006, 66, 9065–9073. [Google Scholar] [CrossRef] [Green Version]
- Marquis, R.W.; Lago, A.M.; Callahan, J.F.; Trout, R.E.; Gowen, M.; DelMar, E.G.; van Wagenen, B.C.; Logan, S.; Shimizu, S.; Fox, J.; et al. Antagonists of the calcium receptor I. Amino alcohol-based parathyroid hormone secretagogues. J. Med. Chem. 2009, 52, 3982–3993. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, A.; Nayeem, M.J.; Sato, M. Calcilytics inhibit the proliferation and migration of human prostate cancer PC-3 cells. J. Pharmacol. Sci. 2019, 139, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Mertz, K.D.; Setlur, S.R.; Dhanasekaran, S.M.; Demichelis, F.; Perner, S.; Tomlins, S.; Tchinda, J.; Laxman, B.; Vessella, R.L.; Beroukhim, R.; et al. Molecular characterization of TMPRSS2-ERG gene fusion in the NCI-H660 prostate cancer cell line: A new perspective for an old model. Neoplasia 2007, 9, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Grant, M.P.; Stepanchick, A.; Cavanaugh, A.; Breitwieser, G.E. Agonist-driven maturation and plasma membrane insertion of calcium-sensing receptors dynamically control signal amplitude. Sci. Signal 2011, 4, ra78. [Google Scholar] [CrossRef]
- Gerbino, A.; Colella, M. The Different Facets of Extracellular Calcium Sensors: Old and New Concepts in Calcium-Sensing Receptor Signalling and Pharmacology. Int. J. Mol. Sci. 2018, 19, 999. [Google Scholar] [CrossRef] [Green Version]
- Patel, G.K.; Chug, N.; Tripathi, M. Neuroendocrine differentiation of prostate cancer—An intriguing example of tumor evolution at play. Cancers 2019, 11, 1405. [Google Scholar] [CrossRef] [Green Version]
NL (n = 57) | CLC (n = 314) | MCRPC (n = 81) | NEPC (n = 15) | |
---|---|---|---|---|
CaSR | ||||
− (n) | 33 | 231 | 61 | 0 |
+ (n) | 24 | 83 | 20 | 15 |
% (median, range) | 1 (1–2) | 1 (1–8) | 2 (1–15) | 90 (40–100) |
Chromogranin | ||||
− (n) | 34 | 227 | 67 | 0 |
+ (n) | 23 | 87 | 14 | 15 |
% (median, range) | 1 (1–2) | 1 (1–9) | 2 (1–7) | 80 (10–100) |
Synaptophysin | ||||
− (n) | 45 | 269 | 72 | 9 |
+ (n) | 12 | 42 | 9 | 6 |
Ki67 | NA | |||
% (median, range) | 2 (0–12) | 6 (0–70) | 70 (8–90) | |
ERG | NA | (274 cases available) | ||
− (n) | 114 | 50 | 13 | |
+ (n) | 60 | 31 | 2 |
Groups | NL (n = 57) | CLC (n = 314) | MCRPC (n = 52) | NEPC (n = 15) |
---|---|---|---|---|
Age (year), Median (Range) | 64 (48–80) | 63 (46–74) | 69 (48–91) | 77 (61–90) |
PSA (ng/ml) | - | 9 (1.5–22) | 31.6 (3.2–2000) | 5.8 (0.03–12.8) |
pTNM | NA | NA | NA | |
pT2 | 204 | |||
pT3 | 110 | |||
ISUP Group | NA | NA | NA | |
1 | 77 | |||
2 | 89 | |||
3 | 128 | |||
4–5 | 20 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bery, F.; Cancel, M.; Chantôme, A.; Guibon, R.; Bruyère, F.; Rozet, F.; Mahéo, K.; Fromont, G. The Calcium-Sensing Receptor is A Marker and Potential Driver of Neuroendocrine Differentiation in Prostate Cancer. Cancers 2020, 12, 860. https://doi.org/10.3390/cancers12040860
Bery F, Cancel M, Chantôme A, Guibon R, Bruyère F, Rozet F, Mahéo K, Fromont G. The Calcium-Sensing Receptor is A Marker and Potential Driver of Neuroendocrine Differentiation in Prostate Cancer. Cancers. 2020; 12(4):860. https://doi.org/10.3390/cancers12040860
Chicago/Turabian StyleBery, Fanny, Mathilde Cancel, Aurélie Chantôme, Roseline Guibon, Franck Bruyère, François Rozet, Karine Mahéo, and Gaëlle Fromont. 2020. "The Calcium-Sensing Receptor is A Marker and Potential Driver of Neuroendocrine Differentiation in Prostate Cancer" Cancers 12, no. 4: 860. https://doi.org/10.3390/cancers12040860
APA StyleBery, F., Cancel, M., Chantôme, A., Guibon, R., Bruyère, F., Rozet, F., Mahéo, K., & Fromont, G. (2020). The Calcium-Sensing Receptor is A Marker and Potential Driver of Neuroendocrine Differentiation in Prostate Cancer. Cancers, 12(4), 860. https://doi.org/10.3390/cancers12040860