Distinct 3D Structural Patterns of Lamin A/C Expression in Hodgkin and Reed-Sternberg Cells
<p>Example of lamin A/C protein staining in cells from Hodgkin’s lymphoma (HDLM-2). (<b>A</b>) Two-dimensional (2D) image of nuclei stained with 4′,6-diamidino-2-phenylindole (DAPI)-(gray scale); (<b>B</b>) 2D image of anti-lamin A/C antibody immunostaining (green); (<b>C</b>) 2D merged image showing both mono-nuclear H (empty arrowhead) and bi- to multi-nuclear RS cells (solid arrowhead) expressing lamin A/C.</p> "> Figure 2
<p>Lamin A/C immunostaining of resting and LPS-activated lymphocytes from peripheral blood (PB) of a healthy donor. (<b>A</b>) 2D image of nuclei stained with DAPI (gray scale); (<b>B</b>) 2D image of anti-lamin A/C antibody immunostaining (green); (<b>C</b>) 2D merged image showing activated lymphocytes with a higher fluorescence intensity lamin A/C signal (solid arrowhead) compared to resting cells (empty arrowhead). Complete 3D reconstitution of a resting (<b>D</b>) and an activated (<b>E</b>) lymphocyte.</p> "> Figure 3
<p>Lamin A/C patterns in 3D reconstructions of H and RS nuclei from HDLM-2. (<b>A</b>–<b>E</b>) H cells patterns according to how the internal lamin structures divide the 3D structure of lamin A/C: (<b>A</b>) pattern 0, characterized by a 3D pattern similar to the regular pattern of the LPS-activated lymphocytes, showing, however, localized accumulation of the lamin A/C; (<b>B</b>) pattern A, characterized by the irregular lamin A/C 3D distribution and the presence of invaginations due to short internal lamin structures; (<b>C</b>) pattern B, characterized by a single long internal lamin A/C 3D structure, which divides the nucleus into 2 different compartments; (<b>D)</b> pattern C, characterized by 3D multiple internal lamin structures which divide the nucleus into 3 different compartments; (<b>E</b>) pattern D, characterized by 3D division of the nucleus into 4 different compartments. (<b>F</b>–<b>H</b>) RS cells patterns according to the number of nuclei: (<b>F</b>), bi-nuclear RS cell; (<b>G</b>) tetra-nuclear RS cell; (<b>H</b>) multi-nuclear RS cell.</p> "> Figure 4
<p>Example of lamin A/C expression in primary Hodgkin’s lymphoma paraffin-embedded pre-treatment lymph node tissues from patients diagnosed with cHL. (<b>A</b>) 2D image of nuclei stained with DAPI (gray scale); (<b>B</b>) 2D image of anti-lamin A/C antibody immunostaining (red); (<b>C</b>) 2D merged image showing H (empty arrowhead) and RS (solid arrowhead) cells positively stained for lamin A/C. 3D reconstruction of patient-derived mono-nuclear Hodgkin (H) (<b>D</b>), and bi-nuclear (RS) cells (<b>E</b>), presenting the same patterns of irregular lamin A/C 3D structure characterized by internal lamin structures and points of protein accumulation, similar to those seen in the HL derived cell lines.</p> "> Figure 5
<p>siRNA silencing of lamin A/C in HDLM-2. Lamin A/C expression was monitored by Western Blot after siRNA lamin A/C transfection in different concentration (12.5 nM, 25 nM and 50 nM) for 24 h (<b>A</b>), 48 h (<b>B</b>), 72 h (<b>C</b>) and 96 h (<b>D</b>). siRNA Scramble was used as a negative control and Cyclophilin B was used as a loading control. The fold-decrease for the siRNA is relative to the negative control (Scramble for each concentration) and the Scramble is relative to control without transfection (Control). These experiments were performed in triplicate using cells from different passages.</p> "> Figure 6
<p>Investigation of siRNA silencing of lamin A/C in HDLM-2 for additional time points. Lamin A/C expression was monitored by Western Blot after siRNA lamin A/C transfection for 96 h, 120 h and 144 h (50 nM). siRNA Scramble was used as a negative control and Cyclophilin B was used as a loading control. The fold-decrease for the siRNA is relative to the negative control (Scramble for each concentration) and the Scramble is relative to control without transfection (Control). These experiments were performed in triplicate using cells in different passages.</p> "> Figure 7
<p>Granulometry analysis of siRNA lamin A/C cells and Scramble cells: (<b>A</b>) SIM image of Scramble H cell; (<b>B</b>) SIM image of siRNA H cell; (<b>C</b>) Measurements of the size distribution of DNA structure and structure of the DNA-free space in SIM images of Hoechst (33258) stained nuclei of 30 H cells from three independent experiments; (<b>D</b>) SIM image of Scramble RS cell; (<b>E</b>) SIM image of siRNA RS cell; (<b>F</b>) Measurements of the size distribution of DNA structure (H: <span class="html-italic">p</span> = 0.26; RS: <span class="html-italic">p</span> < 0.001) and structure of the DNA-free space (H: <span class="html-italic">p</span> = 0.37; RS: <span class="html-italic">p</span> < 0.001) in SIM images of Hoechst (33258) stained nuclei of 30 RS cells from three independent experiments. Two-sided, two-sample Kolmogorov–Smirnov test was used to determine statistical significance.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Lamin A/C and Lamin B1 in Hodgkin Lymphoma Derived Cell Lines and PBLs
2.2. Lamin A/C and Lamin B1 3D Spatial Distribution Patterns in Hodgkin Lymphoma Derived Cell Lines and PBLs
2.3. Hodgkin’s Lymphoma Patient Samples and Reactive Tonsils Samples
2.4. Co-Localization of Lamin A/C and Telomeres in H and RS Cells
2.5. Silencing of Lamin A/C mRNA and 3D Telomere Structure Analysis
2.6. DNA Structure and Stucture of DNA-Poor Spaces in siRNA Treated HL Cell Line
3. Discussion
4. Materials and Methods
4.1. Lymphocyte Isolation and Stimulation
4.2. Cell Lines
4.3. Immunohistochemistry
4.4. Lamin A/C Patterns Quantitative Analysis
4.5. cHL Patient Samples
4.6. Immuno-Staining for Lamin A/C/Telo-Q-FISH
4.7. siRNA Silencing and Western Blot
4.8. 3D Image Acquisition
4.9. Image Analysis
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016, 127, 2375–2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Küppers, R.; Rajewsky, K.; Zhao, M.; Simons, G.; Laumann, R.; Fischer, R.; Hansmann, M.L. Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc. Natl. Acad. Sci. USA 1994, 91, 10962–10966. [Google Scholar] [CrossRef] [PubMed]
- Bohle, V.; Döring, C.; Hansmann, M.-L.; Küppers, R. Role of early B-cell factor 1 (EBF1) in Hodgkin lymphoma. Leukemia 2013, 27, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Izban, K.F.; Ergin, M.; Huang, Q.; Qin, J.Z.; Martinez, R.L.; Schnitzer, B.; Ni, H.; Nickoloff, B.J.; Alkan, S. Characterization of NF-kappaB expression in Hodgkin’s disease: Inhibition of constitutively expressed NF-κB results in spontaneous caspase-independent apoptosis in Hodgkin and Reed-Sternberg cells. Mod. Pathol. 2001, 14, 297–310. [Google Scholar] [CrossRef] [PubMed]
- Drexler, H.G.; Gignac, S.M.; Hoffbrand, A.V.; Minowada, J. Formation of multinucleated cells in a Hodgkin’s-disease-derived cell line. Int. J. Cancer 1989, 43, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Knecht, H.; Sawan, B.; Lichtensztejn, D.; Lemieux, B.; Wellinger, R.J.; Mai, S. The 3D nuclear organization of telomeres marks the transition from Hodgkin to Reed-Sternberg cells. Leukemia 2009, 23, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Knecht, H.; Sawan, B.; Lichtensztejn, Z.; Lichtensztejn, D.; Mai, S. 3D Telomere FISH defines LMP1-expressing Reed-Sternberg cells as end-stage cells with telomere-poor “ghost” nuclei and very short telomeres. Lab. Investig. 2010, 90, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Righolt, C.H.; Guffei, A.; Knecht, H.; Young, I.T.; Stallinga, S.; van Vliet, L.J.; Mai, S. Differences in nuclear DNA organization between lymphocytes, Hodgkin and Reed-Sternberg cells revealed by structured illumination microscopy. J. Cell. Biochem. 2014, 115, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Righolt, C.H.; Knecht, H.; Mai, S. DNA Superresolution Structure of Reed-Sternberg Cells Differs Between Long-Lasting Remission Versus Relapsing Hodgkin’s Lymphoma Patients. J. Cell. Biochem. 2016, 117, 1633–1637. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.; Worman, H.J. Structural organization of the human gene (LMNB1) encoding nuclear lamin B1. Genomics 1995, 27, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Höger, T.H.; Zatloukal, K.; Waizenegger, I.; Krohne, G. Characterization of a second highly conserved B-type lamin present in cells previously thought to contain only a single B-type lamin. Chromosoma 1990, 99, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Fisher, D.Z.; Chaudhary, N.; Blobel, G. cDNA sequencing of nuclear lamins A and C reveals primary and secondary structural homology to intermediate filament proteins. Proc. Natl. Acad. Sci. USA 1986, 83, 6450–6454. [Google Scholar] [CrossRef] [PubMed]
- Harborth, J.; Elbashir, S.M.; Bechert, K.; Tuschl, T.; Weber, K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J. Cell Sci. 2001, 114, 4557–4565. [Google Scholar] [PubMed]
- Willis, N.D.; Cox, T.R.; Rahman-Casañs, S.F.; Smits, K.; Przyborski, S.A.; van den Brandt, P.; van Engeland, M.; Weijenberg, M.; Wilson, R.G.; de Bruïne, A.; et al. Lamin A/C Is a Risk Biomarker in Colorectal Cancer. PLoS ONE 2008, 3, e2988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruenbaum, Y.; Goldman, R.D.; Meyuhas, R.; Mills, E.; Margalit, A.; Fridkin, A.; Dayani, Y.; Prokocimer, M.; Enosh, A. The nuclear lamina and its functions in the nucleus. Int. Rev. Cytol. 2003, 226, 1–62. [Google Scholar] [PubMed]
- Qi, R.; Xu, N.; Wang, G.; Ren, H.; Li, S.; Lei, J.; Lin, Q.; Wang, L.; Gu, X.; Zhang, H.; et al. The lamin-A/C-LAP2α-BAF1 protein complex regulates mitotic spindle assembly and positioning. J. Cell Sci. 2015, 128, 2830–2841. [Google Scholar] [CrossRef] [PubMed]
- González-Granado, J.M.; Silvestre-Roig, C.; Rocha-Perugini, V.; Trigueros-Motos, L.; Cibrián, D.; Morlino, G.; Blanco-Berrocal, M.; Osorio, F.G.; Freije, J.M.P.; López-Otín, C.; et al. Nuclear envelope lamin-A couples actin dynamics with immunological synapse architecture and T cell activation. Sci. Signal 2014, 7, ra37. [Google Scholar] [CrossRef] [PubMed]
- Broers, J.L.; Raymond, Y.; Rot, M.K.; Kuijpers, H.; Wagenaar, S.S.; Ramaekers, F.C. Nuclear A-type lamins are differentially expressed in human lung cancer subtypes. Am. J. Pathol. 1993, 143, 211–220. [Google Scholar] [PubMed]
- Moss, S.F.; Krivosheyev, V.; de Souza, A.; Chin, K.; Gaetz, H.P.; Chaudhary, N.; Worman, H.J.; Holt, P.R. Decreased and aberrant nuclear lamin expression in gastrointestinal tract neoplasms. Gut 1999, 45, 723–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrelo, R.; Setien, F.; Espada, J.; Artiga, M.J.; Rodriguez, M.; Pérez-Rosado, A.; Sanchez-Aguilera, A.; Fraga, M.F.; Piris, M.A.; Esteller, M. Inactivation of the lamin A/C gene by CpG island promoter hypermethylation in hematologic malignancies, and its association with poor survival in nodal diffuse large B-cell lymphoma. J. Clin. Oncol. 2005, 23, 3940–3947. [Google Scholar] [CrossRef] [PubMed]
- Tilli, C.M.L.J.; Ramaekers, F.C.S.; Broers, J.L.V.; Hutchison, C.J.; Neumann, H.A.M. Lamin expression in normal human skin, actinic keratosis, squamous cell carcinoma and basal cell carcinoma. Br. J. Dermatol. 2003, 148, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Maresca, G.; Natoli, M.; Nardella, M.; Arisi, I.; Trisciuoglio, D.; Desideri, M.; Brandi, R.; D’Aguanno, S.; Nicotra, M.R.; D’Onofrio, M.; et al. LMNA knock-down affects differentiation and progression of human neuroblastoma cells. PLoS ONE 2012, 7, e45513. [Google Scholar] [CrossRef] [PubMed]
- Skvortsov, S.; Schäfer, G.; Stasyk, T.; Fuchsberger, C.; Bonn, G.K.; Bartsch, G.; Klocker, H.; Huber, L.A. Proteomics profiling of microdissected low- and high-grade prostate tumors identifies Lamin A as a discriminatory biomarker. J. Proteome Res. 2011, 10, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Jansen, M.P.; Machiels, B.M.; Hopman, A.H.; Broers, J.L.; Bot, F.J.; Arends, J.W.; Ramaekers, F.C.; Schouten, H.C. Comparison of A and B-type lamin expression in reactive lymph nodes and nodular sclerosing Hodgkin’s disease. Histopathology 1997, 31, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Ollion, J.; Cochennec, J.; Loll, F.; Escudé, C.; Boudier, T. TANGO: A generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics 2013, 29, 1840–1841. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, S.; Begum, F.; Gim, J.; Wark, L.; Henderson, D.; Davie, J.R.; Hombach-Klonisch, S.; Klonisch, T. High Mobility Group A2 protects cancer cells against telomere dysfunction. Oncotarget 2016, 7, 12761–12782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.; Risques, R.A.; Martin, G.M.; Rabinovitch, P.S.; Oshima, J. Accelerated telomere shortening and replicative senescence in human fibroblasts overexpressing mutant and wild-type lamin A. Exp. Cell Res. 2008, 314, 82–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalo, S. DNA Damage and Lamins. In Cancer Biology and the Nuclear Envelope; Schirmer, E.C., de las Heras, J.I., Eds.; Springer: New York, NY, USA, 2014; Volume 773, pp. 377–399. ISBN 978-1-4899-8031-1. [Google Scholar]
- Gonzalez-Suarez, I.; Redwood, A.B.; Perkins, S.M.; Vermolen, B.; Lichtensztejin, D.; Grotsky, D.A.; Morgado-Palacin, L.; Gapud, E.J.; Sleckman, B.P.; Sullivan, T.; et al. Novel roles for A-type lamins in telomere biology and the DNA damage response pathway. EMBO J. 2009, 28, 2414–2427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rengstl, B.; Kim, S.; Döring, C.; Weiser, C.; Bein, J.; Bankov, K.; Herling, M.; Newrzela, S.; Hansmann, M.-L.; Hartmann, S. Small and big Hodgkin-Reed-Sternberg cells of Hodgkin lymphoma cell lines L-428 and L-1236 lack consistent differences in gene expression profiles and are capable to reconstitute each other. PLoS ONE 2017, 12, e0177378. [Google Scholar] [CrossRef] [PubMed]
- Bronshtein, I.; Kepten, E.; Kanter, I.; Berezin, S.; Lindner, M.; Redwood, A.B.; Mai, S.; Gonzalo, S.; Foisner, R.; Shav-Tal, Y.; et al. Loss of lamin A function increases chromatin dynamics in the nuclear interior. Nat. Commun. 2015, 6, 8044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, A.M.; Rendtlew Danielsen, J.M.; Lucas, C.A.; Rice, E.L.; Scalzo, D.; Shimi, T.; Goldman, R.D.; Smith, E.D.; Le Beau, M.M.; Kosak, S.T. TRF2 and lamin A/C interact to facilitate the functional organization of chromosome ends. Nat. Commun. 2014, 5, 5467. [Google Scholar] [CrossRef] [PubMed]
- Knecht, H.; Righolt, C.; Mai, S. Genomic Instability: The Driving Force behind Refractory/Relapsing Hodgkin’s Lymphoma. Cancers (Basel) 2013, 5, 714–725. [Google Scholar] [CrossRef] [PubMed]
- Guffei, A.; Sarkar, R.; Klewes, L.; Righolt, C.; Knecht, H.; Mai, S. Dynamic chromosomal rearrangements in Hodgkin’s lymphoma are due to ongoing three-dimensional nuclear remodeling and breakage-bridge-fusion cycles. Haematologica 2010, 95, 2038–2046. [Google Scholar] [CrossRef] [PubMed]
- Knecht, H.; Johnson, N.A.; Haliotis, T.; Lichtensztejn, D.; Mai, S. Disruption of direct 3D telomere–TRF2 interaction through two molecularly disparate mechanisms is a hallmark of primary Hodgkin and Reed–Sternberg cells. Lab. Investig. 2017, 97, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Knecht, H.; Mai, S. The Use of 3D Telomere FISH for the Characterization of the Nuclear Architecture in EBV-Positive Hodgkin’s Lymphoma. Methods Mol. Biol. 2017, 1532, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Chuang, T.C.Y.; Moshir, S.; Garini, Y.; Chuang, A.Y.-C.; Young, I.T.; Vermolen, B.; van den Doel, R.; Mougey, V.; Perrin, M.; Braun, M.; et al. The three-dimensional organization of telomeres in the nucleus of mammalian cells. BMC Biol. 2004, 2, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Lamin A/C Pattern | Mean ± SD | Percentage |
---|---|---|
Hodgkin Cell Pattern 0 | 5 ± 3 | 15.48% |
Hodgkin Cell Pattern A | 10 ± 1 | 29.15% |
Hodgkin Cell Pattern B | 14.67 ± 4.51 | 42.16% |
Hodgkin Cell Pattern C | 4.33 ± 3.51 | 11.63% |
Hodgkin Cell Pattern D | 0.67 ± 1.15 | 1.59% |
Bi-nuclear Reed-Sternberg | 19.67 ± 8.74 | 57.66% |
Tri-nuclear Reed-Sternberg | 7.33 ± 0.58 | 22.27% |
Tetra-nuclear Reed-Sternberg | 3.33 ± 1.15 | 10.29% |
Multi-nuclear Reed-Sternberg | 3 ± 4.36 | 9.79% |
Lamin A/C Pattern | Ie/Ii | S.D. |
---|---|---|
Hodgkin Cell Pattern 0 | 1.88 | 1.17 |
Hodgkin Cell Pattern A | 2.65 | 1.15 |
Hodgkin Cell Pattern B | 3.65 | 2.12 |
Hodgkin Cell Pattern C | 4.02 | 2.66 |
Hodgkin Cell Pattern D | 5.43 | 0.04 |
Bi-nuclear Reed-Sternberg | 2.96 | 1.07 |
Tri-nuclear Reed-Sternberg | 3.57 | 1.26 |
Tetra-nuclear Reed-Sternberg | 4.50 | 3.37 |
Multi-nuclear Reed-Sternberg | 4.55 | 2.95 |
Case | Gender | Age at Diagnosis | Stage | Type of Chemotherapy | Relapse | EBV Status | Lamin A/C Fluorescent Signal |
---|---|---|---|---|---|---|---|
1 | Male | 24 | IV | ABVD | N | − | −/− |
2 | Female | 55 | III | ABVD | Y | − | −/+ |
3 | Female | 25 | I | ABVD | N | + | −/− |
4 | Male | 55 | III | ABVD | Y | − | +++ |
5 | Male | 47 | I | ABVD | N | + | +++ |
6 | Female | 75 | IV | ABVD | N | − | −/+ |
7 | Male | 22 | II | ABVD | N | − | +++ |
8 | Male | 19 | II A | ABVD | N | − | −/+ |
9 | Male | 50 | III A | ABVD | N | − | +++ |
10 | Male | 37 | I A | ABVD | N | + | +++ |
11 | Male | 85 | III | CHLVPP | Y | − | −/− |
12 | Male | 28 | IA | ABVD | N | − | −/+ |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contu, F.; Rangel-Pozzo, A.; Trokajlo, P.; Wark, L.; Klewes, L.; Johnson, N.A.; Petrogiannis-Haliotis, T.; Gartner, J.G.; Garini, Y.; Vanni, R.; et al. Distinct 3D Structural Patterns of Lamin A/C Expression in Hodgkin and Reed-Sternberg Cells. Cancers 2018, 10, 286. https://doi.org/10.3390/cancers10090286
Contu F, Rangel-Pozzo A, Trokajlo P, Wark L, Klewes L, Johnson NA, Petrogiannis-Haliotis T, Gartner JG, Garini Y, Vanni R, et al. Distinct 3D Structural Patterns of Lamin A/C Expression in Hodgkin and Reed-Sternberg Cells. Cancers. 2018; 10(9):286. https://doi.org/10.3390/cancers10090286
Chicago/Turabian StyleContu, Fabio, Aline Rangel-Pozzo, Peter Trokajlo, Landon Wark, Ludger Klewes, Nathalie A. Johnson, Tina Petrogiannis-Haliotis, John G. Gartner, Yuval Garini, Roberta Vanni, and et al. 2018. "Distinct 3D Structural Patterns of Lamin A/C Expression in Hodgkin and Reed-Sternberg Cells" Cancers 10, no. 9: 286. https://doi.org/10.3390/cancers10090286
APA StyleContu, F., Rangel-Pozzo, A., Trokajlo, P., Wark, L., Klewes, L., Johnson, N. A., Petrogiannis-Haliotis, T., Gartner, J. G., Garini, Y., Vanni, R., Knecht, H., & Mai, S. (2018). Distinct 3D Structural Patterns of Lamin A/C Expression in Hodgkin and Reed-Sternberg Cells. Cancers, 10(9), 286. https://doi.org/10.3390/cancers10090286