Multimodal Imaging of Osteosarcoma: From First Diagnosis to Radiomics
<p>Radiographic examples of sclerotic ((<b>A</b>,<b>B</b>); arrows) and lucent ((<b>C</b>,<b>D</b>); arrows) lesions. Both sclerotic and lucent patterns can appear in both benign and malignant bone lesions. Note, for comparison, two examples of osteosarcomas (<b>A</b>,<b>C</b>) and benign lesion, osteoid osteoma (<b>B</b>), and fibrous dysplasia (<b>D</b>).</p> "> Figure 2
<p>Examples of osteosarcomas with varying margin patterns. (<b>A</b>) Ill-defined margins (arrow) (Type II). (<b>B</b>) Mixed well-defined (arrowhead) and ill-defined (arrow) margins, also referred to as “changing margins” (Type IIIA). (<b>C</b>) Moth-eaten osteolytic lesion or (<b>D</b>) permeative osteolytic lesion (Type IIIB). A permeative bone process or moth-eaten appearance refers to multiple small endosteal lucent lesions or holes.</p> "> Figure 3
<p>Various types of periosteal reactions. (<b>A</b>) Codman’s triangle (arrow); (<b>B</b>) lamellated or “onion skin” pattern (arrow); (<b>C</b>) “hair-on-end” appearance (arrow); (<b>D</b>) sunburst appearance (arrows).</p> "> Figure 4
<p>Examples of endosteal scalloping. (<b>A</b>) Thinning of the inner bony cortex (arrowhead) in a case of osteosarcoma, associated with mild cortical bulging (arrow). For comparison, (<b>B</b>) shows uniform cortical thinning (arrows) associated with a radiolucent lesion in case of fibrous dysplasia.</p> "> Figure 5
<p>Example of pathological fractures in osteosarcomas. (<b>A</b>) The radiograph presents a meta-epiphyseal lesion of the proximal humerus (fibroblastic variant or conventional osteosarcoma) with mixed density, osteoid matrix mineralization, and permeative margins. A pathological fracture is also visible (arrow). (<b>B</b>) Another radiographic example shows a pathological fracture (arrow) associated with a sclerotic bone lesion in femur metaphysis.</p> "> Figure 6
<p>CT assessment of osteosarcoma in a complex anatomical region. On radiograph (<b>A</b>), the lesion is difficult to identify, but an asymmetry of the left mandibular ramus (solid arrow) compared to the normal contralateral side (arrowhead) can be observed in the frontal view. On CT (<b>B</b>,<b>C</b>), an osteolytic lesion with an internal osteoid matrix is clearly identified (arrows).</p> "> Figure 7
<p>Vertebral osteosarcoma. Sagittal (<b>A</b>) and axial (<b>B</b>) CT scans of the spine, theosteoid matrix (arrows) can be seen within the soft tissue component of the tumor, which involves the adjacent paravertebral muscles.</p> "> Figure 8
<p>Biopsy of a suspected malignant bone lesion. (<b>A</b>) Preliminary assessment with ultrasound; (<b>B</b>) CT-guided biopsy.</p> "> Figure 9
<p>Pulmonary metastases from osteosarcoma with calcifications (arrow).</p> "> Figure 10
<p>(<b>A</b>) Pelvic radiograph showing osteoblastic lesion (asterisk) at the left acetabulum with soft tissue component (arrow) and osteoid matrix, more clearly seen on CT with bone window in (<b>B</b>). (<b>C</b>) Soft tissue window on CT reveals the soft component (arrows). The ureter was observed to be infiltrated and indistinguishable within the tumor mass. (<b>D</b>) Hydronephrosis has caused rupture of renal pelvis with evident extravasation of contrast media (arrows).</p> "> Figure 11
<p>Typical example of osteosarcoma on MRI. (<b>A</b>) T1-weighted image. A pathological fracture (arrow) is noted along with an ill-defined hypointense mass (arrowheads) and intramedullary lesion at diaphysis (asterisk). (<b>B</b>) The T2 fs sequence demonstrates the lesion and the extent of edema, which in this case extends to the entire thigh musculature (arrows). (<b>C</b>) Post-contrast T1-weighted sequence, highlighting the proliferating pathological tissue (arrow) within the lesion. sag = sagittal; ax = axial; cor = coronal; T1 = T1-weighted; T2 = T2-weighted; fs = fat saturated; c = contrast-enhanced.</p> "> Figure 12
<p>Epiphyseal involvement. (<b>A</b>,<b>B</b>) Lesion of the proximal tibial metaphysis. The intramedullary lesion abuts the epiphyseal plate superiorly, with the epiphysis preserved. (<b>C</b>,<b>D</b>) The lesion abuts the epiphysis with epiphyseal involvement (arrowhead). (<b>E</b>,<b>F</b>) Epiphyseal involvement. sag = sagittal; ax = axial; cor = coronal; T1 = T1-weighted; T2 = T2-weighted; fs = fat saturated; c = contrast-enhanced.</p> "> Figure 13
<p>Joint involvement. (<b>A</b>–<b>C</b>) This case demonstrates an extensive osseous lesion (asterisk) in the right proximal tibia, extending from the epiphysis to the proximal one-third of the diaphysis, with cortical breach and a large soft tissue component. The mass appears heterogeneous with a hypointense signal on T1-weighted images and a variable signal on T2-weighted images, along with heterogeneous contrast enhancement. Intra-articular extension into the right knee joint is observed, encasing the anterior (arrowhead) and posterior cruciate ligaments (arrow). sag = sagittal; T1 = T1-weighted; T2 = T2-weighted; fs = fat saturated; c = contrast-enhanced.</p> "> Figure 14
<p>Soft tissue invasion. Critical concerns include the loss of fat planes with nearby organs (urinary bladder, prostate, rectum (arrow)), indicating possible tumor infiltration and the involvement of the adductor brevis, adductor magnus, and obturator internus muscles.</p> "> Figure 15
<p>The area of highest cellularity (arrows) on post-contrast T1-weighted sequence (<b>A</b>) shows high signal intensity on DWI (<b>B</b>) and low signal intensity on ADC map (<b>C</b>), which serve as potential biopsy targets. ax = axial; T1 = T1-weighted; T2 = T2-weighted; fs = fat saturated; c = contrast-enhanced. Courtesy of Dr. Hammar Haouimi, licensed under CC BY-NC-SA 3.0.</p> "> Figure 16
<p>Bone scan. A 17-year-old woman with a suspected osteosarcoma at the left distal femur underwent a Tc-99 m MDP bone scan. The results show significantly increased uptake at the left distal femur, while the rest of the skeleton, epiphyseal plates, kidneys, and bladder appear unremarkable.</p> "> Figure 17
<p>Two examples of osteoblastic osteosarcoma located in the right distal femur (<b>A</b>,<b>B</b>) and proximal tibia (<b>C</b>,<b>D</b>). Radiographs (<b>A</b>,<b>C</b>) show a sunburst periosteal reaction (arrowheads). CT images (<b>B</b>,<b>D</b>) reveal cortical destruction ((<b>B</b>), arrowhead) and cortical thickening ((<b>D</b>), arrowheads).</p> "> Figure 17 Cont.
<p>Two examples of osteoblastic osteosarcoma located in the right distal femur (<b>A</b>,<b>B</b>) and proximal tibia (<b>C</b>,<b>D</b>). Radiographs (<b>A</b>,<b>C</b>) show a sunburst periosteal reaction (arrowheads). CT images (<b>B</b>,<b>D</b>) reveal cortical destruction ((<b>B</b>), arrowhead) and cortical thickening ((<b>D</b>), arrowheads).</p> "> Figure 18
<p>Radiographic appearances of conventional osteosarcoma variants. (<b>A</b>,<b>B</b>) Chondroblastic variant; (<b>C</b>,<b>D</b>) fibroblastic variant; (<b>E</b>) fibroblastic variant; (<b>F</b>) mixed chondroblastic and fibroblastic variant; (<b>G</b>) mixed osteoblastic and chondroblastic variant. Significant overlap exists among subtypes, with typically mixed density of the lesion, as in (<b>A</b>). Predominantly lytic forms are noted in (<b>C</b>,<b>F</b>), while sclerotic forms are evident in (<b>E</b>,<b>G</b>). When mineralization is present, it is primarily osteoid, as shown in (<b>E</b>,<b>G</b>).</p> "> Figure 19
<p>Telangiectatic osteosarcoma of the distal femoral diaphysis. (A) The lesion demonstrates bone destruction and a multiloculated soft tissue component. Regions of fluid–fluid levels are evident ((<b>B</b>), arrow) along with areas of high signal intensity on T2-weighted image ((<b>B</b>), asterisk) and T1-weighted images with fat suppression ((<b>C</b>), asterisk), indicative of hemorrhage. (<b>D</b>) Post-gadolinium images show peripheral (arrow) and septal (arrowheads) enhancement. (<b>E</b>,<b>F</b>) Fluid–fluid levels are visible (arrow), showing different stages of hemoglobin degradation compared to the previous case (arrow). (<b>G</b>) Another example of telangiectatic osteosarcoma with extensive involvement of the femoral diaphyseal marrow. Image courtesy of Dr. Yasser Asiri, licensed under CC BY-NC-SA 3.0.</p> "> Figure 20
<p>Aneurysmal bone cyst. (<b>A</b>) Radiograph shows a lytic lesion in the proximal humeral metaphysis with a narrow zone of transition, causing mild cortical bulging. (<b>B</b>) T2-weighted fat-saturated sequences reveal fluid signal within the cyst. (<b>C</b>) Mild perilesional enhancement is observed in post-contrast sequences.</p> "> Figure 21
<p>Small-cell osteosarcoma of the iliopubic branch, presenting as a sclerotic lesion with exuberant osteoid matrix formation. The osteoid matrix is clearly visible, appearing as an abnormal area of increased bone density area on radiographs (<b>A</b>) and CT (<b>B</b>) and as a hypointense alteration on T1-weighted MRI (<b>C</b>,<b>D</b>).</p> "> Figure 22
<p>Parosteal osteosarcoma. A large exophytic mass protrudes from the anteromedial cortex of the proximal tibial metaphysis. On CT (<b>A</b>,<b>B</b>), cortical thickening (asterisks) and a dense osteoid matrix are visible, with greater density at the center compared to the periphery. A thin cleavage plane between the cortex and the tumor ((<b>A</b>,<b>B</b>,<b>D</b>), arrowheads) is seen, while adjacent cortical thickening and sclerosis are noted in the older areas, along with some zones of cortical lysis ((<b>C</b>,<b>E</b>), white arrows). The lesion has well-defined margins and appears hypointense on T1 (<b>C</b>,<b>D</b>), predominantly hypointense on T2 (<b>E</b>) with heterogeneous post-contrast enhancement (<b>F</b>). No cystic areas or fluid–fluid levels are identified. Courtesy of Dr. Dalia Ibrahim, Lecturer, Cairo University. Licensed under CC BY-NC-SA 3.0.</p> ">
1. Introduction
2. Imaging Assessment of Osteosarcoma
3. Osteosarcoma Subtypes
3.1. Intramedullary (Central) Osteosarcoma
3.1.1. Conventional Osteosarcoma
3.1.2. Secondary Osteosarcoma
3.1.3. Teleangectatic Osteosarcoma
3.1.4. Small-Cell Osteosarcoma
3.1.5. Low-Grade Central Osteosarcoma
3.2. Juxtacortical (Surface) Osteosarcomas
3.2.1. Parosteal Osteosarcoma
3.2.2. Periosteal Osteosarcoma
3.2.3. High-Grade Surface Osteosarcoma
4. Recent Advancements
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ottaviani, G.; Jaffe, N. The Epidemiology of Osteosarcoma. In Pediatric and Adolescent Osteosarcoma; Jaffe, N., Bruland, O., Bielack, S., Eds.; Springer: Boston, MA, USA, 2009; Volume 152, pp. 3–13. [Google Scholar]
- Lindsey, B.A.; Markel, J.E.; Kleinerman, E.S. Osteosarcoma Overview. Rheumatol. Ther. 2017, 4, 25–43. [Google Scholar] [CrossRef] [PubMed]
- Mirabello, L.; Troisi, R.J.; Savage, S.A. International Osteosarcoma Incidence Patterns in Children and Adolescents, Middle Ages and Elderly Persons. Int. J. Cancer 2009, 125, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Cole, S.; Gianferante, D.M.; Zhu, B.; Mirabello, L. Osteosarcoma: A Surveillance, Epidemiology, and End Results Program-based Analysis from 1975 to 2017. Cancer 2022, 128, 2107–2118. [Google Scholar] [CrossRef] [PubMed]
- Kar, E.; Ammanamanchi, A.; Yousif, M.; Geetha, S.D.; Schwartz, K.; Mishra, A.S.; Ling, J.; Nonyelu, K.N.; Kannadath, B.S. From Bimodal to Unimodal: The Transformed Incidence of Osteosarcoma in the United States. J. Bone Oncol. 2024, 47, 100613. [Google Scholar] [CrossRef]
- Kansara, M.; Teng, M.W.; Smyth, M.J.; Thomas, D.M. Translational Biology of Osteosarcoma. Nat. Rev. Cancer 2014, 14, 722–735. [Google Scholar] [CrossRef]
- Fujiwara, T.; Fujiwara, M.; Numoto, K.; Ogura, K.; Yoshida, A.; Yonemoto, T.; Suzuki, S.; Kawai, A. Second Primary Osteosarcomas in Patients with Retinoblastoma. Jpn. J. Clin. Oncol. 2015, 45, hyv140. [Google Scholar] [CrossRef]
- Wong, F.L. Cancer Incidence After Retinoblastoma. JAMA 1997, 278, 1262. [Google Scholar] [CrossRef] [PubMed]
- Saucier, E.; Bougeard, G.; Gomez-Mascard, A.; Schramm, C.; Abbas, R.; Berlanga, P.; Briandet, C.; Castex, M.; Corradini, N.; Coze, C.; et al. Li–Fraumeni-associated Osteosarcomas: The French Experience. Pediatr. Blood Cancer 2024, 71, e31362. [Google Scholar] [CrossRef] [PubMed]
- Mai, P.L.; Best, A.F.; Peters, J.A.; DeCastro, R.M.; Khincha, P.P.; Loud, J.T.; Bremer, R.C.; Rosenberg, P.S.; Savage, S.A. Risks of First and Subsequent Cancers among TP53 Mutation Carriers in the National Cancer Institute Li-Fraumeni Syndrome Cohort. Cancer 2016, 122, 3673–3681. [Google Scholar] [CrossRef]
- Mirabello, L.; Zhu, B.; Koster, R.; Karlins, E.; Dean, M.; Yeager, M.; Gianferante, M.; Spector, L.G.; Morton, L.M.; Karyadi, D.; et al. Frequency of Pathogenic Germline Variants in Cancer-Susceptibility Genes in Patients with Osteosarcoma. JAMA Oncol. 2020, 6, 724. [Google Scholar] [CrossRef] [PubMed]
- Resnick, D.L.; Kransdorf, M.J. Bone and Joint Imaging, 3rd ed.; Elsevier Saunders: Philadelphia, PA, USA, 2004; pp. 1131–1139. [Google Scholar]
- Choi, J.H.; Ro, J.Y. The 2020 WHO Classification of Tumors of Bone: An Updated Review. Adv. Anat. Pathol. 2021, 28, 119–138. [Google Scholar] [CrossRef] [PubMed]
- WIDHE, B.; WIDHE, T. Initial Symptoms and Clinical Features in Osteosarcoma and Ewing Sarcoma*. J. Bone Joint Surg. Am. 2000, 82, 667–674. [Google Scholar] [CrossRef] [PubMed]
- Grimer, R.J.; Carter, S.R.; Tillman, R.M.; Abudu, A. Early Symptoms and Diagnosis of Bone Tumors. J. Bone Joint Surg. Am. 2001, 83, 1107–1108. [Google Scholar] [CrossRef]
- Rae, M.; Wong, J.; Tunis, J.; Hess, W.F.; Gardner, J.M.; DelSole, E.M. Atypical Presentation of Primary Osteosarcoma of the Lumbar Spine with Caval Tumor Thrombus in a 17-Year-Old Male: A Case Report. Curr. Sports Med. Rep. 2022, 21, 391–394. [Google Scholar] [CrossRef]
- Menendez, N.; Epelman, M.; Shao, L.; Douglas, D.; Meyers, A.B. Pediatric Osteosarcoma: Pearls and Pitfalls. Semin. Ultrasound CT MRI 2022, 43, 97–114. [Google Scholar] [CrossRef] [PubMed]
- Yarmish, G.; Klein, M.J.; Landa, J.; Lefkowitz, R.A.; Hwang, S. Imaging Characteristics of Primary Osteosarcoma: Nonconventional Subtypes. RadioGraphics 2010, 30, 1653–1672. [Google Scholar] [CrossRef]
- Crombé, A.; Simonetti, M.; Longhi, A.; Hauger, O.; Fadli, D.; Spinnato, P. Imaging of Osteosarcoma: Presenting Findings, Metastatic Patterns, and Features Related to Prognosis. J. Clin. Med. 2024, 13, 5710. [Google Scholar] [CrossRef]
- Debs, P.; Ahlawat, S.; Fayad, L.M. Bone Tumors: State-of-the-Art Imaging. Skeletal Radiol. 2024, 53, 1783–1798. [Google Scholar] [CrossRef]
- Cè, M.; Irmici, G.; Foschini, C.; Danesini, G.M.; Falsitta, L.V.; Serio, M.L.; Fontana, A.; Martinenghi, C.; Oliva, G.; Cellina, M. Artificial Intelligence in Brain Tumor Imaging: A Step toward Personalized Medicine. Curr. Oncol. 2023, 30, 2673–2701. [Google Scholar] [CrossRef] [PubMed]
- Majumder, S.; Katz, S.; Kontos, D.; Roshkovan, L. State of the Art: Radiomics and Radiomics-Related Artificial Intelligence on the Road to Clinical Translation. BJR|Open 2023, 6, tzad004. [Google Scholar] [CrossRef]
- Caloro, E.; Gnocchi, G.; Quarrella, C.; Ce, M.; Carrafiello, G.; Cellina, M. Artificial Intelligence in Bone Metastasis Imaging: Recent Progresses from Diagnosis to Treatment—A Narrative Review. Crit. Rev. Oncog. 2024, 29, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Yang, Y.; Hu, M.; Zhang, Z.; Zhou, X. Artificial Intelligence-Based Radiomics in Bone Tumors: Technical Advances and Clinical Application. Semin. Cancer Biol. 2023, 95, 75–87. [Google Scholar] [CrossRef]
- Cellina, M.; Cè, M.; Irmici, G.; Ascenti, V.; Khenkina, N.; Toto-Brocchi, M.; Martinenghi, C.; Papa, S.; Carrafiello, G. Artificial Intelligence in Lung Cancer Imaging: Unfolding the Future. Diagnostics 2022, 12, 2644. [Google Scholar] [CrossRef]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The Bridge between Medical Imaging and Personalized Medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef]
- Zhong, J.; Hu, Y.; Zhang, G.; Xing, Y.; Ding, D.; Ge, X.; Pan, Z.; Yang, Q.; Yin, Q.; Zhang, H.; et al. An Updated Systematic Review of Radiomics in Osteosarcoma: Utilizing CLAIM to Adapt the Increasing Trend of Deep Learning Application in Radiomics. Insights Imaging 2022, 13, 138. [Google Scholar] [CrossRef] [PubMed]
- Kundu, Z.S. Classification, Imaging, Biopsy and Staging of Osteosarcoma. Indian J. Orthop. 2014, 48, 238–246. [Google Scholar] [CrossRef] [PubMed]
- Jaovisidha, S.; Subhadrabandhu, T.; Siriwongpairat, P.; Pochanugool, L. An Integrated Approach to The Evaluation of Osseous Tumors. Orthop. Clin. N. Am. 1998, 29, 19–39. [Google Scholar] [CrossRef] [PubMed]
- Greenspan, A. Orthopedic Imaging: A Practical Approach, 5th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2010; pp. 706–724. [Google Scholar]
- González-Huete, A.; Salgado-Parente, A.; Suevos-Ballesteros, C.; Antolinos-Macho, E.; Ventura-Díaz, S.; Michael-Fernández, A.; Blázquez-Sánchez, J.; Acosta-Batlle, J. Radiographic Evaluation of Bone Tumors. RadioGraphics 2023, 43, e230048. [Google Scholar] [CrossRef]
- Chang, C.Y.; Garner, H.W.; Ahlawat, S.; Amini, B.; Bucknor, M.D.; Flug, J.A.; Khodarahmi, I.; Mulligan, M.E.; Peterson, J.J.; Riley, G.M.; et al. Society of Skeletal Radiology– White Paper. Guidelines for the Diagnostic Management of Incidental Solitary Bone Lesions on CT and MRI in Adults: Bone Reporting and Data System (Bone-RADS). Skeletal Radiol. 2022, 51, 1743–1764. [Google Scholar] [CrossRef]
- Ghasemi, A.; Ahlawat, S. Bone Reporting and Data System (Bone-RADS) and Other Proposed Practice Guidelines for Reporting Bone Tumors. RöFo—Fortschritte Auf Dem Geb. Röntgenstrahlen Und Bildgeb. Verfahr. 2024, 196, 1134–1142. [Google Scholar] [CrossRef] [PubMed]
- Caracciolo, J.T.; Ali, S.; Chang, C.Y.; Degnan, A.J.; Flemming, D.J.; Henderson, E.R.; Kransdorf, M.J.; Letson, G.D.; Madewell, J.E.; Murphey, M.D. Bone Tumor Risk Stratification and Management System: A Consensus Guideline from the ACR Bone Reporting and Data System Committee. J. Am. Coll. Radiol. 2023, 20, 1044–1058. [Google Scholar] [CrossRef] [PubMed]
- Bisseret, D.; Kaci, R.; Lafage-Proust, M.-H.; Alison, M.; Parlier-Cuau, C.; Laredo, J.-D.; Bousson, V. Periosteum: Characteristic Imaging Findings with Emphasis on Radiologic-Pathologic Comparisons. Skeletal Radiol. 2015, 44, 321–338. [Google Scholar] [CrossRef] [PubMed]
- Bousson, V.; Bisseret, D.; Kaci, R. Overview of Periosteal Reaction by Imaging. Semin. Musculoskelet. Radiol. 2023, 27, 421–431. [Google Scholar] [CrossRef]
- Plant, J.; Cannon, S. Diagnostic Work up and Recognition of Primary Bone Tumours: A Review. EFORT Open Rev. 2016, 1, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Schima, W.; Amann, G.; Stiglbauer, R.; Windhager, R.; Kramer, J.; Nicolakis, M.; Farres, M.T.; Imhof, H. Preoperative Staging of Osteosarcoma: Efficacy of MR Imaging in Detecting Joint Involvement. Am. J. Roentgenol. 1994, 163, 1171–1175. [Google Scholar] [CrossRef]
- Yildirim, O.; Al Khatalin, M.; Kargin, O.A.; Camurdan, V.B. MRI for Evaluation of Preoperative Chemotherapy in Osteosarcoma. Radiography 2022, 28, 593–604. [Google Scholar] [CrossRef]
- Cellina, M.; Martinenghi, C.; De Nardi, S.; Palamenghi, A.; Cè, M.; Sforza, C.; Cappella, A.; Gibelli, D. Anatomy of the Mental Foramen: Relationship among Different Metrical Parameters for Accurate Localization. Appl. Sci. 2023, 13, 9235. [Google Scholar] [CrossRef]
- Smeland, S.; Bielack, S.S.; Whelan, J.; Bernstein, M.; Hogendoorn, P.; Krailo, M.D.; Gorlick, R.; Janeway, K.A.; Ingleby, F.C.; Anninga, J.; et al. Survival and Prognosis with Osteosarcoma: Outcomes in More than 2000 Patients in the EURAMOS-1 (European and American Osteosarcoma Study) Cohort. Eur. J. Cancer 2019, 109, 36–50. [Google Scholar] [CrossRef]
- Luo, Z.; Shen, X. Cinematic Rendering of Giant Osteosarcoma in Femur. Radiology 2024, 311, e233536. [Google Scholar] [CrossRef] [PubMed]
- Saglam, F.; Baysal, Ö.; Sofulu, Ö.; Baykan, S.E.; Erol, B. The Impact of Pathological Fractures on Surgery, Morbidity, Functional and Oncological Outcomes in Patients with Primary Bone Sarcomas. Injury 2021, 52, 1740–1747. [Google Scholar] [CrossRef] [PubMed]
- Papagelopoulos, P.J.; Mavrogenis, A.F.; Savvidou, O.D.; Benetos, I.S.; Galanis, E.C.; Soucacos, P.N. Pathological Fractures in Primary Bone Sarcomas. Injury 2008, 39, 395–403. [Google Scholar] [CrossRef]
- Taupin, T.; Decouvelaere, A.-V.; Vaz, G.; Thiesse, P. Accuracy of Core Needle Biopsy for the Diagnosis of Osteosarcoma: A Retrospective Analysis of 73patients. Diagn. Interv. Imaging 2016, 97, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Chiesa, A.M.; Spinnato, P.; Miceli, M.; Facchini, G. Radiologic Assessment of Osteosarcoma Lung Metastases: State of the Art and Recent Advances. Cells 2021, 10, 553. [Google Scholar] [CrossRef] [PubMed]
- Meazza, C.; Scanagatta, P. Metastatic Osteosarcoma: A Challenging Multidisciplinary Treatment. Expert. Rev. Anticancer. Ther. 2016, 16, 543–556. [Google Scholar] [CrossRef]
- Zwaga, T.; Bovée, J.V.M.G.; Kroon, H.M. Osteosarcoma of the Femur with Skip, Lymph Node, and Lung Metastases. RadioGraphics 2008, 28, 277–283. [Google Scholar] [CrossRef]
- Brader, P.; Abramson, S.J.; Price, A.P.; Ishill, N.M.; Emily, Z.C.; Moskowitz, C.S.; La Quaglia, M.P.; Ginsberg, M.S. Do Characteristics of Pulmonary Nodules on Computed Tomography in Children with Known Osteosarcoma Help Distinguish Whether the Nodules Are Malignant or Benign? J. Pediatr. Surg. 2011, 46, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, K.M.; Lee, L.H.; Beckingsale, T.B.; Gerrand, C.H.; Rankin, K.S. Indeterminate Nodules in Osteosarcoma: What’s the Follow-Up? Br. J. Cancer 2018, 118, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Strauss, S.J.; Frezza, A.M.; Abecassis, N.; Bajpai, J.; Bauer, S.; Biagini, R.; Bielack, S.; Blay, J.Y.; Bolle, S.; Bonvalot, S.; et al. Bone Sarcomas: ESMO–EURACAN–GENTURIS–ERN PaedCan Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2021, 32, 1520–1536. [Google Scholar] [CrossRef]
- Kager, L.; Zoubek, A.; Kastner, U.; Kempf-Bielack, B.; Potratz, J.; Kotz, R.; Exner, G.U.; Franzius, C.; Lang, S.; Maas, R.; et al. Skip Metastases in Osteosarcoma: Experience of the Cooperative Osteosarcoma Study Group. J. Clin. Oncol. 2006, 24, 1535–1541. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, J.C.; Baghdadi, S.; Pogoriler, J.; Guariento, A.; Rajapakse, C.S.; Arkader, A. Pediatric Osteosarcoma: Correlation of Imaging Findings with Histopathologic Features, Treatment, and Outcome. RadioGraphics 2022, 42, 1196–1213. [Google Scholar] [CrossRef]
- Ahmed, A.R. Secondary Bone Lesions in the Affected Limb in Osteosarcoma (Skip Lesions), Its Classification and Prognosis. Arch. Orthop. Trauma. Surg. 2011, 131, 1351–1355. [Google Scholar] [CrossRef]
- Saifuddin, A.; Michelagnoli, M.; Pressney, I. Skip Metastases in High-Grade Intramedullary Appendicular Osteosarcoma: An Indicator of More Aggressive Disease? Skeletal Radiol. 2021, 50, 2415–2422. [Google Scholar] [CrossRef] [PubMed]
- Bielack, S.S.; Kempf-Bielack, B.; Delling, G.; Exner, G.U.; Flege, S.; Helmke, K.; Kotz, R.; Salzer-Kuntschik, M.; Werner, M.; Winkelmann, W.; et al. Prognostic Factors in High-Grade Osteosarcoma of the Extremities or Trunk: An Analysis of 1,702 Patients Treated on Neoadjuvant Cooperative Osteosarcoma Study Group Protocols. J. Clin. Oncol. 2002, 20, 776–790. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Gilg, M.; Evans, S.; Totti, F.; Stevenson, J.; Jeys, L.; Parry, M. Survival of Osteosarcoma Patients Following Diagnosis of Synchronous Skip Metastases. J. Orthop. 2020, 18, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Barnett, J.R.; Gikas, P.; Gerrand, C.; Briggs, T.W.; Saifuddin, A. The Sensitivity, Specificity, and Diagnostic Accuracy of Whole-Bone MRI for Identifying Skip Metastases in Appendicular Osteosarcoma and Ewing Sarcoma. Skeletal Radiol. 2020, 49, 913–919. [Google Scholar] [CrossRef] [PubMed]
- O’Flanagan, S.; Stack, J.; McGee, H.; Dervan, P.; Hurson, B. Imaging of Intramedullary Tumour Spread in Osteosarcoma. A Comparison of Techniques. J. Bone Joint Surg. Br. 1991, 73-B, 998–1001. [Google Scholar] [CrossRef] [PubMed]
- Onikul, E.; Fletcher, B.D.; Parham, D.M.; Chen, G. Accuracy of MR Imaging for Estimating Intraosseous Extent of Osteosarcoma. Am. J. Roentgenol. 1996, 167, 1211–1215. [Google Scholar] [CrossRef] [PubMed]
- Van Trommel, M.F.; Kroon, H.M.; Bloem, J.L.; Hogendoorn, P.C.W.; Taminiau, A.H.M. MR Imaging Based Strategies in Limb Salvage Surgery for Osteosarcoma of the Distal Femur. Skeletal Radiol. 1997, 26, 636–641. [Google Scholar] [CrossRef]
- Fletcher, B.D.; Wall, J.E.; Hanna, S.L. Effect of Hematopoietic Growth Factors on MR Images of Bone Marrow in Children Undergoing Chemotherapy. Radiology 1993, 189, 745–751. [Google Scholar] [CrossRef]
- Hoffer, F.A.; Nikanorov, A.Y.; Reddick, W.E.; Bodner, S.M.; Xiong, X.; Jones-Wallace, D.; Gronemeyer, S.A.; Rao, B.N.; Kauffman, W.M.; Laor, T. Accuracy of MR Imaging for Detecting Epiphyseal Extension of Osteosarcoma. Pediatr. Radiol. 2000, 30, 289–298. [Google Scholar] [CrossRef]
- Jesus-Garcia, R.; Seixas, M.T.; Costa, S.R.; Petrilli, A.S.; Filho, J.L. Epiphyseal Plate Involvement in Osteosarcoma. Clin. Orthop. Relat. Res. 2000, 373, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Bodden, J.; Neumann, J.; Rasper, M.; Fingerle, A.A.; Knebel, C.; von Eisenhart-Rothe, R.; Specht, K.; Mogler, C.; Bollwein, C.; Schwaiger, B.J.; et al. Diagnosis of Joint Invasion in Patients with Malignant Bone Tumors: Value and Reproducibility of Direct and Indirect Signs on MR Imaging. Eur. Radiol. 2022, 32, 4738–4748. [Google Scholar] [CrossRef] [PubMed]
- Kanthawang, T.; Wudhikulprapan, W.; Phinyo, P.; Settakorn, J.; Pruksakorn, D.; Link, T.M.; Pattamapaspong, N. Can Conventional Magnetic Resonance Imaging at Presentation Predict Chemoresistance in Osteosarcoma? Br. J. Radiol. 2023, 97, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Bammer, R. Basic Principles of Diffusion-Weighted Imaging. Eur. J. Radiol. 2003, 45, 169–184. [Google Scholar] [CrossRef]
- Guadilla, I.; Calle, D.; López-Larrubia, P. Diffusion-Weighted Magnetic Resonance Imaging. In Preclinical MRI. Methods in Molecular Biology; García Martín, M., López Larrubia, P., Eds.; Humana Press: New York, NY, USA, 2018; Volume 1718, pp. 89–101. [Google Scholar]
- Bajpai, J.; Gamnagatti, S.; Kumar, R.; Sreenivas, V.; Sharma, M.C.; Khan, S.A.; Rastogi, S.; Malhotra, A.; Safaya, R.; Bakhshi, S. Role of MRI in Osteosarcoma for Evaluation and Prediction of Chemotherapy Response: Correlation with Histological Necrosis. Pediatr. Radiol. 2011, 41, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Hayashida, Y.; Yakushiji, T.; Awai, K.; Katahira, K.; Nakayama, Y.; Shimomura, O.; Kitajima, M.; Hirai, T.; Yamashita, Y.; Mizuta, H. Monitoring Therapeutic Responses of Primary Bone Tumors by Diffusion-Weighted Image: Initial Results. Eur. Radiol. 2006, 16, 2637–2643. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; An, R.; Xue, Y.; Li, F.; Wang, H.; Zheng, J.; Fan, L.; Liu, J.; Fan, H.; Yin, H. Prognostic Value of Tumoral and Peritumoral Magnetic Resonance Parameters in Osteosarcoma Patients for Monitoring Chemotherapy Response. Eur. Radiol. 2021, 31, 3518–3529. [Google Scholar] [CrossRef] [PubMed]
- Zampa, V.; Aringhieri, G.; Tintori, R.; Rossi, P.; Andreani, L.; Franchi, A. The Added Value of the Visual Analysis of DWI in Post-Surgery Follow-up of Soft Tissue Sarcoma of the Extremities: Do We Really Need ADC? Radiol. Med. 2023, 128, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Teo, K.Y.; Daescu, O.; Cederberg, K.; Sengupta, A.; Leavey, P.J. Correlation of Histopathology and Multi-Modal Magnetic Resonance Imaging in Childhood Osteosarcoma: Predicting Tumor Response to Chemotherapy. PLoS ONE 2022, 17, e0259564. [Google Scholar] [CrossRef]
- Cuenod, C.A.; Balvay, D. Perfusion and Vascular Permeability: Basic Concepts and Measurement in DCE-CT and DCE-MRI. Diagn. Interv. Imaging 2013, 94, 1187–1204. [Google Scholar] [CrossRef]
- Kalisvaart, G.M.; Van Den Berghe, T.; Grootjans, W.; Lejoly, M.; Huysse, W.C.J.; Bovée, J.V.M.G.; Creytens, D.; Gelderblom, H.; Speetjens, F.M.; Lapeire, L.; et al. Evaluation of Response to Neoadjuvant Chemotherapy in Osteosarcoma Using Dynamic Contrast-Enhanced MRI: Development and External Validation of a Model. Skeletal Radiol. 2024, 53, 319–328. [Google Scholar] [CrossRef]
- Ehara, S. MR Imaging in Staging of Bone Tumors. Cancer Imaging 2006, 6, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, T.; Medellin, M.R.; Sambri, A.; Tsuda, Y.; Balko, J.; Sumathi, V.; Gregory, J.; Jeys, L.; Abudu, A. Preoperative Surgical Risk Stratification in Osteosarcoma Based on the Proximity to the Major Vessels. Bone Joint J. 2019, 101-B, 1024–1031. [Google Scholar] [CrossRef] [PubMed]
- Suthar, R.; Bharwani, N.; Pareek, P.; Salunke, A.A.; Patel, K.; Shukla, S.; Aron, J.; Kapoor, K.; Yalla, P.; Rathod, P.; et al. Role of Bone Scintigraphy (Bone Scan) in Skeletal Osteosarcoma: A Retrospective Audit and Review from Tertiary Oncology Centre. J. Orthop. 2024, 48, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Hurley, C.; McCarville, M.B.; Shulkin, B.L.; Mao, S.; Wu, J.; Navid, F.; Daw, N.C.; Pappo, A.S.; Bishop, M.W. Comparison of 18 F-FDG-PET-CT and Bone Scintigraphy for Evaluation of Osseous Metastases in Newly Diagnosed and Recurrent Osteosarcoma. Pediatr. Blood Cancer 2016, 63, 1381–1386. [Google Scholar] [CrossRef]
- Oh, C.; Bishop, M.W.; Cho, S.Y.; Im, H.-J.; Shulkin, B.L. 18 F-FDG PET/CT in the Management of Osteosarcoma. J. Nucl. Med. 2023, 64, 842–851. [Google Scholar] [CrossRef] [PubMed]
- Aryal, A.; Kumar, V.S.; Shamim, S.A.; Gamanagatti, S.; Khan, S.A. What Is the Comparative Ability of 18F-FDG PET/CT, 99mTc-MDP Skeletal Scintigraphy, and Whole-Body MRI as a Staging Investigation to Detect Skeletal Metastases in Patients with Osteosarcoma and Ewing Sarcoma? Clin. Orthop. Relat. Res. 2021, 479, 1768–1779. [Google Scholar] [CrossRef] [PubMed]
- Farwell, M.D.; Pryma, D.A.; Mankoff, D.A. PET/CT Imaging in Cancer: Current Applications and Future Directions. Cancer 2014, 120, 3433–3445. [Google Scholar] [CrossRef]
- Davis, J.C.; Daw, N.C.; Navid, F.; Billups, C.A.; Wu, J.; Bahrami, A.; Jenkins, J.J.; Snyder, S.E.; Reddick, W.E.; Santana, V.M.; et al. 18 F-FDG Uptake During Early Adjuvant Chemotherapy Predicts Histologic Response in Pediatric and Young Adult Patients with Osteosarcoma. J. Nucl. Med. 2018, 59, 25–30. [Google Scholar] [CrossRef]
- Palmerini, E.; Colangeli, M.; Nanni, C.; Fanti, S.; Marchesi, E.; Paioli, A.; Picci, P.; Cambioli, S.; Donati, D.; Cevolani, L.; et al. The Role of FDG PET/CT in Patients Treated with Neoadjuvant Chemotherapy for Localized Bone Sarcomas. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 215–223. [Google Scholar] [CrossRef]
- Xu, J.; Li, Y.; Xie, L.; Sun, X.; Cai, Z.; Wang, S.; Wang, Q.; Sun, K.; Guo, W. An Evaluation of the Response to Neoadjuvant Chemotherapy for Osteosarcoma of Extremities: PERCIST versus RECIST 1.1 Criteria after Long-Term Follow-Up. Ann. Nucl. Med. 2022, 36, 553–561. [Google Scholar] [CrossRef]
- Breden, S.; Hinterwimmer, F.; Consalvo, S.; Neumann, J.; Knebel, C.; von Eisenhart-Rothe, R.; Burgkart, R.H.; Lenze, U. Deep Learning-Based Detection of Bone Tumors around the Knee in X-rays of Children. J. Clin. Med. 2023, 12, 5960. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Jiang, J.; Zhan, X.; Liang, Y.; Guo, Q.; Liu, P.; Lu, L.; Yang, Y.; Xu, W.; Zhang, Y.; et al. Integrating Artificial Intelligence in Osteosarcoma Prognosis: The Prognostic Significance of SERPINE2 and CPT1B Biomarkers. Sci. Rep. 2024, 14, 4318. [Google Scholar] [CrossRef]
- Rothzerg, E.; Xu, J.; Wood, D. Different Subtypes of Osteosarcoma: Histopathological Patterns and Clinical Behaviour. J. Mol. Pathol. 2023, 4, 99–108. [Google Scholar] [CrossRef]
- Klein, M.J.; Siegal, G.P. Osteosarcoma. Am. J. Clin. Pathol. 2006, 125, 555–581. [Google Scholar] [CrossRef]
- Hwang, S.; Hameed, M.; Kransdorf, M. The 2020 World Health Organization Classification of Bone Tumors: What Radiologists Should Know. Skeletal Radiol. 2023, 52, 329–348. [Google Scholar] [CrossRef]
- Southekal, S.; Shakyawar, S.K.; Bajpai, P.; Elkholy, A.; Manne, U.; Mishra, N.K.; Guda, C. Molecular Subtyping and Survival Analysis of Osteosarcoma Reveals Prognostic Biomarkers and Key Canonical Pathways. Cancers 2023, 15, 2134. [Google Scholar] [CrossRef] [PubMed]
- Sangle, N.A.; Layfield, L.J. Telangiectatic Osteosarcoma. Arch. Pathol. Lab. Med. 2012, 136, 572–576. [Google Scholar] [CrossRef] [PubMed]
- Angelini, A.; Mavrogenis, A.F.; Trovarelli, G.; Ferrari, S.; Picci, P.; Ruggieri, P. Telangiectatic Osteosarcoma: A Review of 87 Cases. J. Cancer Res. Clin. Oncol. 2016, 142, 2197–2207. [Google Scholar] [CrossRef] [PubMed]
- Malhas, A.M.; Sumathi, V.P.; James, S.L.; Menna, C.; Carter, S.R.; Tillman, R.M.; Jeys, L.; Grimer, R.J. Low-Grade Central Osteosarcoma: A Difficult Condition to Diagnose. Sarcoma 2012, 2012, 764796. [Google Scholar] [CrossRef]
- Damron, T.A.; Ward, W.G.; Stewart, A. Osteosarcoma, Chondrosarcoma, and Ewing’s Sarcoma. Clin. Orthop. Relat. Res. 2007, 459, 40–47. [Google Scholar] [CrossRef]
- Zhong, J.; Hu, Y.; Si, L.; Geng, J.; Xing, Y.; Jiao, Q.; Zhang, H.; Yao, W. Clarifying Prognostic Factors of Small Cell Osteosarcoma: A Pooled Analysis of 20 Cases and the Literature. J. Bone Oncol. 2020, 24, 100305. [Google Scholar] [CrossRef] [PubMed]
- Hang, J.-F.; Chen, P.C.-H. Parosteal Osteosarcoma. Arch. Pathol. Lab. Med. 2014, 138, 694–699. [Google Scholar] [CrossRef]
- Harper, K.; Sathiadoss, P.; Saifuddin, A.; Sheikh, A. A Review of Imaging of Surface Sarcomas of Bone. Skeletal Radiol. 2021, 50, 9–28. [Google Scholar] [CrossRef] [PubMed]
- Norton, K.I.; Hermann, G.; Abdelwahab, I.F.; Klein, M.J.; Granowetter, L.F.; Rabinowitz, J.G. Epiphyseal Involvement in Osteosarcoma. Radiology 1991, 180, 813–816. [Google Scholar] [CrossRef] [PubMed]
- Murphey, M.D.; Robbin, M.R.; McRae, G.A.; Flemming, D.J.; Temple, H.T.; Kransdorf, M.J. The Many Faces of Osteosarcoma. RadioGraphics 1997, 17, 1205–1231. [Google Scholar] [CrossRef] [PubMed]
- Meazza, C.; Giovanna, S.; Nigro, O.; Gattuso, G.; Francesco, B.; Podda, M.; Luksch, R.; Biassoni, V.; Schiavello, E.; Ferrari, A.; et al. Secondary Osteosarcoma: A Challenge Indeed. Int. J. Clin. Oncol. 2023, 28, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.F.; Seton, M.; Merchant, A. Osteosarcoma in Paget’s Disease of Bone. J. Bone Miner. Res. 2006, 21, P58–P63. [Google Scholar] [CrossRef] [PubMed]
- Dray, M.S.; Miller, M.V. Paget’s Osteosarcoma and Post-Radiation Osteosarcoma: Secondary Osteosarcoma at Middlemore Hospital, New Zealand. Pathology 2008, 40, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Davies, A.; James, S. Radiation-Induced Tumours. In Imaging of Bone Tumors and Tumor-Like Lesions, 1st ed.; Davies, A., Sundaram, M., James, S., Eds.; Springer: Berlin, Germany, 2009; pp. 503–514. [Google Scholar]
- Venkatraman, S.; Weisberg, E.M.; Fishman, E.K. Radiation-Induced Osteosarcoma of the Chest Wall after Treatment for Unresectable Thymoma. Radiol. Case Rep. 2023, 18, 3716–3719. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, H.; Takatsu, T.; Imai, R. Radiation-Induced Osteosarcoma in the Pubic Bone after Proton Radiotherapy for Prostate Cancer: A Case Report. J. Rural Med. 2022, 17, 2021–2047. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.W.; Kung, T.M.; Ma, L. Telangiectatic Osteosarcoma of the Mandible. Cancer 1986, 58, 2110–2115. [Google Scholar] [CrossRef] [PubMed]
- Shehadeh, A.M.; Haiba, M.A.; Henshaw, R.M.; Lack, E. Telangiectatic osteosarcoma of the patella. Orthopedics 2008, 8, 808. [Google Scholar] [PubMed]
- Mirabello, L.; Troisi, R.J.; Savage, S.A. Osteosarcoma Incidence and Survival Rates from 1973 to 2004. Cancer 2009, 115, 1531–1543. [Google Scholar] [CrossRef] [PubMed]
- Bishop, J.A.; Shum, C.H.; Sheth, S.; Wakely, P.E.; Ali, S.Z. Small Cell Osteosarcoma. Am. J. Clin. Pathol. 2010, 133, 756–761. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, H.; Sim, F.H.; Bond, J.R.; Unni, K.K. Small Cell Osteosarcoma of Bone. Cancer 1997, 79, 2095–2106. [Google Scholar] [CrossRef]
- Andresen, K.J.; Sundaram, M.; Unni, K.K.; Sim, F.H. Imaging Features of Low-Grade Central Osteosarcoma of the Long Bones and Pelvis. Skeletal Radiol. 2004, 33, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Choong, P.F.M.; Pritchard, D.J.; Rock, M.G.; Sim, F.H.; McLeod, R.A.; Unni, K.K. Low Grade Central Osteogenic Sarcoma A Long-Term Followup of 20 Patients. Clin. Orthop. Relat. Res. 1996, 322, 198. [Google Scholar] [CrossRef]
- Kurt, A.-M.; Unni, K.K.; McLeod, R.A.; Pritchard, D.J. Low-Grade Intraosseous Osteosarcoma. Cancer 1990, 65, 1418–1428. [Google Scholar] [CrossRef] [PubMed]
- Rose, P.S.; Dickey, I.D.; Wenger, D.E.; Unni, K.K.; Sim, F.H. Periosteal Osteosarcoma. Clin. Orthop. Relat. Res. 2006, 453, 314–317. [Google Scholar] [CrossRef]
- Jelinek, J.S.; Murphey, M.D.; Kransdorf, M.J.; Shmookler, B.M.; Malawer, M.M.; Hur, R.C. Parosteal Osteosarcoma: Value of MR Imaging and CT in the Prediction of Histologic Grade. Radiology 1996, 201, 837–842. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Yao, L.; Mirra, J.M.; Bahk, W.J. Osteochondromalike Parosteal Osteosarcoma: A Report of Six Cases of a New Entity. Am. J. Roentgenol. 1998, 170, 1571–1577. [Google Scholar] [CrossRef]
- Murphey, M.D.; Jelinek, J.S.; Temple, H.T.; Flemming, D.J.; Gannon, F.H. Imaging of Periosteal Osteosarcoma: Radiologic-Pathologic Comparison. Radiology 2004, 233, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Antonescu, C.R.; Huvos, A.G. Low-Grade Osteogenic Sarcoma Arising in Medullary and Surface Osseous Locations. Pathol. Patterns Rev. 2000, 114, S90–S103. [Google Scholar] [CrossRef] [PubMed]
- Okada, K.; Frassica, F.J.; Sim, F.H.; Beabout, J.W.; Bond, J.R.; Unni, K.K. Parosteal Osteosarcoma. A Clinicopathological Study. J. Bone Joint Surg. 1994, 76, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Campanacci, M.; Picci, P.; Gherlinzoni, F.; Guerra, A.; Bertoni, F. Neff Parosteal Osteosarcoma. J. Bone Joint Surg. Br. 1984, 66-B, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Dönmez, F.; Tüzün, U.; Başara, C.; Tunaci, M.; Bilgiç, B.; Acunaş, G. MRI Findings in Parosteal Osteosarcoma: Correlation with Histopathology. Diagn. Interv. Radiol. 2008, 14, 147–152. [Google Scholar] [PubMed]
- Bertoni, F.; Bacchini, P.; Staals, E.L.; Davidovitz, P. Dedifferentiated Parosteal Osteosarcoma: The Experience of the Rizzoli Institute. Cancer 2005, 103, 2373–2382. [Google Scholar] [CrossRef]
- Staals, E.L.; Bacchini, P.; Bertoni, F. High-grade Surface Osteosarcoma. Cancer 2008, 112, 1592–1599. [Google Scholar] [CrossRef] [PubMed]
- Revell, M.P.; Deshmukh, N.; Grimer, R.J.; Carter, S.R.; Tillman, R.M. Periosteal Osteosarcoma: A Review of 17 Cases with Mean Follow-up of 52 Months. Sarcoma 2002, 6, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Vanel, D.; Picci, P.; De Paolis, M.; Mercuri, M. Radiological Study of 12 High-Grade Surface Osteosarcomas. Skeletal Radiol. 2001, 30, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Gitto, S.; Serpi, F.; Albano, D.; Risoleo, G.; Fusco, S.; Messina, C.; Sconfienza, L.M. AI Applications in Musculoskeletal Imaging: A Narrative Review. Eur. Radiol. Exp. 2024, 8, 22. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Aerts, H.J.W.L.; Velazquez, E.R.; Leijenaar, R.T.H.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding Tumour Phenotype by Noninvasive Imaging Using a Quantitative Radiomics Approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef] [PubMed]
- Cè, M.; Chiriac, M.D.; Cozzi, A.; Macrì, L.; Rabaiotti, F.L.; Irmici, G.; Fazzini, D.; Carrafiello, G.; Cellina, M. Decoding Radiomics: A Step-by-Step Guide to Machine Learning Workflow in Hand-Crafted and Deep Learning Radiomics Studies. Diagnostics 2024, 14, 2473. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, H.; Feng, C.; Xu, R.; He, Y.; Li, L.; Tu, C. Emerging Applications of Deep Learning in Bone Tumors: Current Advances and Challenges. Front. Oncol. 2022, 12, 908873. [Google Scholar] [CrossRef]
- Hinterwimmer, F.; Guenther, M.; Consalvo, S.; Neumann, J.; Gersing, A.; Woertler, K.; von Eisenhart-Rothe, R.; Burgkart, R.; Rueckert, D. Impact of Metadata in Multimodal Classification of Bone Tumours. BMC Musculoskelet. Disord. 2024, 25, 822. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhi, L.; Li, J.; Wang, M.; Chen, G.; Yin, S. Magnetic Resonance Imaging Radiomics Predicts Histological Response to Neoadjuvant Chemotherapy in Localized High-Grade Osteosarcoma of the Extremities. Acad. Radiol. 2024, 31, 5100–5107. [Google Scholar] [CrossRef]
- White, L.M.; Atinga, A.; Naraghi, A.M.; Lajkosz, K.; Wunder, J.S.; Ferguson, P.; Tsoi, K.; Griffin, A.; Haider, M. T2-Weighted MRI Radiomics in High-Grade Intramedullary Osteosarcoma: Predictive Accuracy in Assessing Histologic Response to Chemotherapy, Overall Survival, and Disease-Free Survival. Skeletal Radiol. 2023, 52, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Zhang, C.; Hu, Y.; Zhang, J.; Liu, Y.; Si, L.; Xing, Y.; Ding, D.; Geng, J.; Jiao, Q.; et al. Automated Prediction of the Neoadjuvant Chemotherapy Response in Osteosarcoma with Deep Learning and an MRI-Based Radiomics Nomogram. Eur. Radiol. 2022, 32, 6196–6206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gao, Q.; Dou, Y.; Cheng, T.; Xia, Y.; Li, H.; Gao, S. Evaluation of the Neoadjuvant Chemotherapy Response in Osteosarcoma Using the MRI DWI-Based Machine Learning Radiomics Nomogram. Front. Oncol. 2024, 14. [Google Scholar] [CrossRef] [PubMed]
- Kufel, J.; Bargieł-Łączek, K.; Kocot, S.; Koźlik, M.; Bartnikowska, W.; Janik, M.; Czogalik, Ł.; Dudek, P.; Magiera, M.; Lis, A.; et al. What Is Machine Learning, Artificial Neural Networks and Deep Learning?—Examples of Practical Applications in Medicine. Diagnostics 2023, 13, 2582. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.M.; Montagnon, E.; Yamashita, R.; Pan, I.; Cadrin-Chênevert, A.; Perdigón Romero, F.; Chartrand, G.; Kadoury, S.; Tang, A. Deep Learning: An Update for Radiologists. RadioGraphics 2021, 41, 1427–1445. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Xia, W.; Zhang, B.; Qiu, B.; Gao, X. MSFCN-Multiple Supervised Fully Convolutional Networks for the Osteosarcoma Segmentation of CT Images. Comput. Methods Programs Biomed. 2017, 143, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Sardanelli, F.; Colarieti, A. Open Issues for Education in Radiological Research: Data Integrity, Study Reproducibility, Peer-Review, Levels of Evidence, and Cross-Fertilization with Data Scientists. Radiol. Med. 2022, 128, 133–135. [Google Scholar] [CrossRef] [PubMed]
- Kocak, B.; Akinci D’Antonoli, T.; Mercaldo, N.; Alberich-Bayarri, A.; Baessler, B.; Ambrosini, I.; Andreychenko, A.E.; Bakas, S.; Beets-Tan, R.G.H.; Bressem, K.; et al. METhodological RadiomICs Score (METRICS): A Quality Scoring Tool for Radiomics Research Endorsed by EuSoMII. Insights Imaging 2024, 15, 8. [Google Scholar] [CrossRef] [PubMed]
- Hasei, J.; Nakahara, R.; Otsuka, Y.; Nakamura, Y.; Hironari, T.; Kahara, N.; Miwa, S.; Ohshika, S.; Nishimura, S.; Ikuta, K.; et al. High-quality Expert Annotations Enhance Artificial Intelligence Model Accuracy for Osteosarcoma X-ray Diagnosis. Cancer Sci. 2024, 115, 3695–3704. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Yuan, X.; Liu, Y.; Tang, S.; Miao, J.; Zhou, Q.; Chen, S. IL-1β-Induced NF-ΚB Activation down-Regulates MiR-506 Expression to Promotes Osteosarcoma Cell Growth through JAG1. Biomed. Pharmacother. 2017, 95, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
Radiograph | CT | MRI | Bone Scan and PET/CT |
---|---|---|---|
|
|
|
|
Feature Evaluated | Corresponding Points | |
---|---|---|
Margins | IA (well defined, sclerotic) | 1 |
IB (well defined, non-sclerotic) | 3 | |
II (ill defined) | 5 | |
IIIA (changing margins from well defined to ill-defined) IIIB (moth-eaten or permeative) IIIC (radiographically occult with invisible margins) | 7 | |
Periosteal reaction | none | 0 |
non-aggressive | 2 | |
aggressive | 4 | |
Endosteal reaction | mild | 0 |
moderate | 1 | |
deep | 2 | |
Pathological fracture | no | 0 |
yes | 2 | |
Soft tissue mass | no | 0 |
yes | 4 | |
Known primary cancer | no | 0 |
yes | 2 | |
Total Points | 0–21 |
Total Points | Bone RADS Score | Description | Lesions Meaning and Recommendations |
---|---|---|---|
N/A | 0 | incompletely characterized | additional imaging is needed |
1–2 | 1 | very low risk | very likely benign pathognomonic benign lesion |
3–4 | 2 | low risk | probably benign if asymptomatic: radiographic follow-up if symptomatic: treatment |
5–6 | 3 | intermediate risk | potentially malignant orthopedic oncology referral for biopsy and treatment planning |
≥7 | 4 | high risk | malignant until proven otherwise orthopedic oncology referral for biopsy and treatment planning |
Subtype | Prevalence | Histology | |
---|---|---|---|
Intramedullary (Central) | Conventional (high-grade) osteosarcoma | 80% [1,4,12] | Spindle-to-polyhedral-shaped malignant mesenchymal cells with high cellularity, nuclear polymorphism, atypia Extracellular matrix production may be osteoblastic, osteoclastic, fibroblastic, or a combination |
Telangiectatic osteosarcoma | 2–12% [92,93] | Dilated hemorrhagic sinusoids and small amounts of osteoid | |
Low-grade osteosarcoma | <2% [18,94] | Well-differentiated cells embedded in the osseous matrix and fibrous stroma, with small amounts of osteoid | |
Small-cell osteosarcoma | 1.5% [95,96] | Numerous small round malignant cells within an osteoid matrix Due to small round cells with hyperchromatic nuclei, it can be confused with Ewing sarcoma or primitive neuroectodermal tumor | |
Juxtacortical (Surface) | Parosteal osteosarcoma | 1–5% [18,97] | Low-grade with a well-differentiated mostly cartilaginous matrix with minimal osteoid |
Periosteal osteosarcoma | 1–2% [18,98] | Mostly cartilaginous matrix; minimal osteoid | |
High-grade osteosarcoma | <1% [18,95] | High-grade spindle-shaped cells with nuclear pleomorphism |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cè, M.; Cellina, M.; Ueanukul, T.; Carrafiello, G.; Manatrakul, R.; Tangkittithaworn, P.; Jaovisidha, S.; Fuangfa, P.; Resnick, D. Multimodal Imaging of Osteosarcoma: From First Diagnosis to Radiomics. Cancers 2025, 17, 599. https://doi.org/10.3390/cancers17040599
Cè M, Cellina M, Ueanukul T, Carrafiello G, Manatrakul R, Tangkittithaworn P, Jaovisidha S, Fuangfa P, Resnick D. Multimodal Imaging of Osteosarcoma: From First Diagnosis to Radiomics. Cancers. 2025; 17(4):599. https://doi.org/10.3390/cancers17040599
Chicago/Turabian StyleCè, Maurizio, Michaela Cellina, Thirapapha Ueanukul, Gianpaolo Carrafiello, Rawee Manatrakul, Phatthawit Tangkittithaworn, Suphaneewan Jaovisidha, Praman Fuangfa, and Donald Resnick. 2025. "Multimodal Imaging of Osteosarcoma: From First Diagnosis to Radiomics" Cancers 17, no. 4: 599. https://doi.org/10.3390/cancers17040599
APA StyleCè, M., Cellina, M., Ueanukul, T., Carrafiello, G., Manatrakul, R., Tangkittithaworn, P., Jaovisidha, S., Fuangfa, P., & Resnick, D. (2025). Multimodal Imaging of Osteosarcoma: From First Diagnosis to Radiomics. Cancers, 17(4), 599. https://doi.org/10.3390/cancers17040599