Impact of Serum GDF-15 and IL-6 on Immunotherapy Response in Cancer: A Prospective Study
<p>Kaplan–Meier progression-free survival analysis for the low/high-GDF-15 group. This analysis includes the final cohort of 85 patients after excluding 12 patients for irregular follow-up visits.</p> "> Figure 2
<p>Kaplan–Meier progression-free survival analysis for the low/high-IL-6 group. This analysis includes the final cohort of 85 patients after excluding 12 patients for irregular follow-up visits.</p> "> Figure 3
<p>Kaplan–Meier overall survival analysis for the low/high-GDF-15 group. This analysis includes the final cohort of 85 patients after excluding 12 patients for irregular follow-up visits.</p> "> Figure 4
<p>Kaplan–Meier overall survival analysis for the low/high-IL-6 group. This analysis includes the final cohort of 85 patients after excluding 12 patients for irregular follow-up visits.</p> "> Figure 5
<p>Kaplan–Meier curve for progression-free survival (PFS) in NSCLC patients by low/high-GDF-15 group.</p> "> Figure 6
<p>Kaplan–Meier curve for progression-free survival (PFS) in the low/high-GDF-15 group of NSCLC patients.</p> ">
1. Introduction
2. Methods
2.1. Study Design
2.2. Study Population
2.3. Outcomes
2.4. Sample Collection and Biomarker Analysis
2.5. Ethical Considerations
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Spearman Correlation Analysis
3.3. Grouping Based on Median GDF-15 and IL-6 Levels
3.4. Progression-Free Survival (PFS) and Overall Survival (OS)
3.5. NSCLC Subgroup Progression-Free Survival Analysis Based on GDF-15 Levels
3.6. Univariate and Multivariate Cox Regression Analyses of Progression-Free Survival (PFS)
3.7. Univariate and Multivariate Cox Regression Analyses of Overall Survival (OS)
3.8. Cachexia Status and Serum GDF-15 Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Postow, M.A.; Callahan, M.K.; Wolchok, J.D. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 2015, 33, 1974–1982. [Google Scholar] [CrossRef] [PubMed]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N. Engl. J. Med. 2012, 366, 2443–2454. [Google Scholar] [CrossRef] [PubMed]
- Raphael, J.; Batra, A.; Boldt, G.; Shah, P.S.; Blanchette, P.; Rodrigues, G.; Vincent, M.D. Predictors of survival benefit from immune checkpoint inhibitors in patients with advanced non–small-cell lung cancer: A systematic review and meta-analysis. Clin. Lung Cancer 2020, 21, 106–113.e5. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Powles, T.; Burotto, M.; Escudier, B.; Bourlon, M.T.; Zurawski, B.; Oyervides Juárez, V.M.; Hsieh, J.J.; Basso, U.; Shah, A.Y. Nivolumab plus cabozantinib versus sunitinib for advanced renal-cell carcinoma. N. Engl. J. Med. 2021, 384, 829–841. [Google Scholar] [CrossRef]
- Lim, J.; Cho, E.; Lee, K.; Choi, Y.; Seo, Y.; Jeon, H.; Choi, J. Current immunotherapy approaches for malignant melanoma. BioChip J. 2019, 13, 105–114. [Google Scholar] [CrossRef]
- Kraehenbuehl, L.; Weng, C.-H.; Eghbali, S.; Wolchok, J.D.; Merghoub, T. Enhancing immunotherapy in cancer by targeting emerging immunomodulatory pathways. Nat. Rev. Clin. Oncol. 2022, 19, 37–50. [Google Scholar] [CrossRef]
- Wischhusen, J.; Melero, I.; Fridman, W.H. Growth/differentiation factor-15 (GDF-15): From biomarker to novel targetable immune checkpoint. Front. Immunol. 2020, 11, 951. [Google Scholar] [CrossRef]
- Fang, L.; Li, F.; Gu, C. GDF-15: A multifunctional modulator and potential therapeutic target in cancer. Curr. Pharm. Des. 2019, 25, 654–662. [Google Scholar] [CrossRef]
- Jin, S.-X.; Liu, B.-N.; Ji, H.-J.; Wu, J.-R.; Li, B.-L.; Gao, X.-L.; Li, N.; Zheng, Z.-D.; Du, C. Serum cytokines and creatinine/cystatin C ratio as prognostic biomarkers in advanced cancer patients treated with anti-PD-1/PD-L1 therapy. Support. Care Cancer 2024, 32, 370. [Google Scholar] [CrossRef]
- Keegan, A.; Ricciuti, B.; Garden, P.; Cohen, L.; Nishihara, R.; Adeni, A.; Paweletz, C.; Supplee, J.; Jänne, P.A.; Severgnini, M. Plasma IL-6 changes correlate to PD-1 inhibitor responses in NSCLC. J. Immunother. Cancer 2020, 8, e000678. [Google Scholar] [CrossRef]
- Kumari, N.; Dwarakanath, B.; Das, A.; Bhatt, A.N. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumor Biol. 2016, 37, 11553–11572. [Google Scholar] [CrossRef] [PubMed]
- Ballén, D.-F.; Carvajal-Fierro, C.A.; Beltrán, R.; Alarcón, M.-L.; Vallejo-Yepes, C.; Brugés-Maya, R. Survival outcomes of metastatic non-small cell lung cancer patients with limited access to immunotherapy and targeted therapy in a cancer center of a low-and middle-income country. Cancer Control 2023, 30, 10732748231189785. [Google Scholar] [CrossRef] [PubMed]
- Welsh, J.B.; Sapinoso, L.M.; Kern, S.G.; Brown, D.A.; Liu, T.; Bauskin, A.R.; Ward, R.L.; Hawkins, N.J.; Quinn, D.I.; Russell, P.J. Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum. Proc. Natl. Acad. Sci. USA 2003, 100, 3410–3415. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-N.; Wang, X.-B.; Wang, T.; Zhang, C.; Zhang, K.-P.; Zhi, X.-Y.; Zhang, W.; Sun, K.-L. Macrophage inhibitory cytokine-1 as a novel diagnostic and prognostic biomarker in stage I and II nonsmall cell lung cancer. Chin. Med. J. 2016, 129, 2026–2032. [Google Scholar] [CrossRef]
- Chung, H.K.; Kim, J.T.; Kim, H.-W.; Kwon, M.; Kim, S.Y.; Shong, M.; Kim, K.S.; Yi, H.-S. GDF15 deficiency exacerbates chronic alcohol-and carbon tetrachloride-induced liver injury. Sci. Rep. 2017, 7, 17238. [Google Scholar] [CrossRef]
- Fearon, K.; Strasser, F.; Anker, S.D.; Bosaeus, I.; Bruera, E.; Fainsinger, R.L.; Jatoi, A.; Loprinzi, C.; MacDonald, N.; Mantovani, G. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011, 12, 489–495. [Google Scholar] [CrossRef]
- Tsai, V.W.; Husaini, Y.; Sainsbury, A.; Brown, D.A.; Breit, S.N. The MIC-1/GDF15-GFRAL pathway in energy homeostasis: Implications for obesity, cachexia, and other associated diseases. Cell Metab. 2018, 28, 353–368. [Google Scholar] [CrossRef]
- Molfino, A.; Amabile, M.I.; Imbimbo, G.; Rizzo, V.; Pediconi, F.; Catalano, C.; Emiliani, A.; Belli, R.; Ramaccini, C.; Parisi, C. Association between growth differentiation factor-15 (GDF-15) serum levels, anorexia and low muscle mass among cancer patients. Cancers 2020, 13, 99. [Google Scholar] [CrossRef]
- Nyakas, M.; Aamdal, E.; Jacobsen, K.D.; Guren, T.K.; Aamdal, S.; Hagene, K.T.; Brunsvig, P.; Yndestad, A.; Halvorsen, B.; Tasken, K.A. Prognostic biomarkers for immunotherapy with ipilimumab in metastatic melanoma. Clin. Exp. Immunol. 2019, 197, 74–82. [Google Scholar] [CrossRef]
- Akdogan, O.; Ogut, B.; Sutcuoglu, O.; Sert, A.; Gurler, F.; Akyurek, N.; Ozdemir, N.; Yazici, O. The impact of the expression level of growth differentiation factor 15 in tumor tissue on the response to immunotherapy in non-small cell lung cancer. BMC Cancer 2024, 24, 1–9. [Google Scholar] [CrossRef]
- Groarke, J.D.; Crawford, J.; Collins, S.M.; Lubaczewski, S.; Roeland, E.J.; Naito, T.; Hendifar, A.E.; Fallon, M.; Takayama, K.; Asmis, T. Ponsegromab for the treatment of cancer cachexia. N. Engl. J. Med. 2024. [Google Scholar] [CrossRef]
- Inoue, Y.; Inui, N.; Karayama, M.; Asada, K.; Fujii, M.; Matsuura, S.; Uto, T.; Hashimoto, D.; Matsui, T.; Ikeda, M. Cytokine profiling identifies circulating IL-6 and IL-15 as prognostic stratifiers in patients with non-small cell lung cancer receiving anti-PD-1/PD-L1 blockade therapy. Cancer Immunol. Immunother. 2023, 72, 2717–2728. [Google Scholar] [CrossRef]
Characteristic | n = 85 (%) |
---|---|
Sex | |
- Male | 58 (68%) |
- Female | 27 (32%) |
Median age (years) | 64.5 (34–80) |
Cancer type | |
- NSCLC | 50 (59%) |
- RCC | 23 (27%) |
- Malignant melanoma | 12 (14%) |
ECOG performance status | |
- ECOG 0 | 31 (36%) |
- ECOG 1 | 54 (64%) |
Biomarker levels, median (range) | |
- GDF-15 (ng/mL) | 26.4 (14.7–798.9) |
- IL-6 (pg/mL) | 20.0 (1.0–183.3) |
Variable | GDF-15 (ρ, p-Value) | IL-6 (ρ, p-Value) | mPFS (ρ, p-Value) |
---|---|---|---|
GDF-15 | 1.000 | −0.063, p: 0.569 | −0.416, p < 0.001 |
IL-6 | −0.063, p = 0.569 | 1.000 | −0.257, p = 0.018 |
mPFS | −0.416, p < 0.001 | −0.257, p = 0.018 | 1.000 |
Characteristic | Low GDF-15 (<26.4 ng/mL) | High GDF-15 (≥26.4 ng/mL) |
---|---|---|
Number of patients | n = 43 | n = 42 |
Cancer type | ||
- NSCLC (%) | 25 (58%) | 25 (59%) |
- RCC (%) | 10 (23%) | 13 (31%) |
- Malignant melanoma (%) | 8 (19%) | 4 (10%) |
Sex | ||
- Male (%) | 29 (67%) | 29 (69%) |
- Female (%) | 14 (33%) | 13 (31%) |
ECOG performance status | ||
- ECOG 0 (%) | 15 (35%) | 16 (38%) |
- ECOG 1 (%) | 28 (65%) | 26 (62%) |
Median IL-6 level (pg/mL) | 20.1 (1.8–183.3) | 19.6 (1.0–116.3) |
Variable | Univariate Analysis (HR, 95% CI, p-Value) | Multivariate Analysis (HR, 95% CI, p-Value) |
---|---|---|
GDF-15 group | ||
- Low group | 0.553 (0.319–0.959), p = 0.032 | 0.362 (0.196–0.669), p = 0.001 |
- High group (reference) | 1.00 | 1.00 |
Cachexia | ||
- No | 0.636 (0.309–1.166), p = 0.054 | 0.447 (0.233–0.857), p = 0.015 |
- Yes (reference) | 1.00 | 1.00 |
Age | ||
- <65 | 0.614 (0.360–1.047), p = 0.070 | 0.653 (0.379–1.126), p = 0.126 |
- ≥65 (reference) | 1.00 | 1.00 |
IL-6 group | ||
- Low group | HR: 0.612 (0.358–1.045) p = 0.072 | 0.677 (0.388–1.181), p = 0.169 |
- High group (reference) | 1.00 | 1.00 |
Cancer type | ||
- NSCLC | 2.531 (1.417–4.523), p = 0.002 | 2.941 (1.620–5.340) p < 0.001 |
- Other (reference) | 1.00 | 1.00 |
Variable | Univariate Analysis (HR, 95% CI, p-Value) | Multivariate Analysis (HR, 95% CI, p-Value) |
---|---|---|
GDF-15 group | ||
- Low group | 0.473 (0.249–0.901), p = 0.020 | 0.296 (0.145–0.602), p = 0.001 |
- High group (reference) | 1.00 | 1.00 |
Cachexia | ||
- No | 0.544 (0.260–1.140), p = 0.089 | 0.445 (0.204–0.968), p = 0.041 |
- Yes (reference) | 1.00 | 1.00 |
Age | ||
- <65 | 0.700 (0.379–1.292), p = 0.251 | |
- ≥65 (reference) | 1.00 | |
IL-6 group | ||
- Low group | HR: 0.547 (0.292–1.024) p = 0.055 | 0.569 (0.298–1.085), p = 0.087 |
- High group (reference) | 1.00 | 1.00 |
Cancer type | ||
- NSCLC | 2.288 (1.170–4.473), p = 0.011 | 2.461 (1.235–4.904) p = 0.010 |
- Other (reference) | 1.00 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akdogan, O.; Turkmen, S.; Uyar, G.C.; Yucel, K.B.; Tufekci, B.; Gurler, F.; Yazici, O.; Ozdemir, N.; Ozet, A.; Karakaya, C.; et al. Impact of Serum GDF-15 and IL-6 on Immunotherapy Response in Cancer: A Prospective Study. Cancers 2024, 16, 4146. https://doi.org/10.3390/cancers16244146
Akdogan O, Turkmen S, Uyar GC, Yucel KB, Tufekci B, Gurler F, Yazici O, Ozdemir N, Ozet A, Karakaya C, et al. Impact of Serum GDF-15 and IL-6 on Immunotherapy Response in Cancer: A Prospective Study. Cancers. 2024; 16(24):4146. https://doi.org/10.3390/cancers16244146
Chicago/Turabian StyleAkdogan, Orhun, Sena Turkmen, Galip Can Uyar, Kadriye Bir Yucel, Busra Tufekci, Fatih Gurler, Ozan Yazici, Nuriye Ozdemir, Ahmet Ozet, Cengiz Karakaya, and et al. 2024. "Impact of Serum GDF-15 and IL-6 on Immunotherapy Response in Cancer: A Prospective Study" Cancers 16, no. 24: 4146. https://doi.org/10.3390/cancers16244146
APA StyleAkdogan, O., Turkmen, S., Uyar, G. C., Yucel, K. B., Tufekci, B., Gurler, F., Yazici, O., Ozdemir, N., Ozet, A., Karakaya, C., & Sutcuoglu, O. (2024). Impact of Serum GDF-15 and IL-6 on Immunotherapy Response in Cancer: A Prospective Study. Cancers, 16(24), 4146. https://doi.org/10.3390/cancers16244146