Multimodal MRI Deep Learning for Predicting Central Lymph Node Metastasis in Papillary Thyroid Cancer
<p>Inclusion and exclusion flowchart.</p> "> Figure 2
<p>Segmentation of the ROI in axial T1 and T2 images. The red arrows in the MRI images indicate the location of the primary lesion.</p> "> Figure 3
<p>Distribution of LASSO coefficients for T1 features, T2 features, and combined T1 + T2 features. (<b>a</b>,<b>b</b>) represent T1 features, (<b>c</b>,<b>d</b>) represent T2 features and (<b>e</b>,<b>f</b>) represent the combined T1 + T2 features.</p> "> Figure 4
<p>Deep learning model workflow.</p> "> Figure 5
<p>Histograms of best feature coefficients for T1, T2, and T1 + T2. (<b>a</b>) The best feature coefficients for T1; (<b>b</b>) the best feature coefficients for T2; (<b>c</b>) the best feature coefficients for T1 + T2.</p> "> Figure 6
<p>The ROC curves of ML and DL models on the training set and test set. (<b>a</b>,<b>b</b>) The ROC curves of the SVM models on the training set and test set, (<b>c</b>,<b>d</b>) the ROC curves of the LR models on the training set and test set, (<b>e</b>,<b>f</b>) the ROC curves of RF models on training set and test set, (<b>g</b>,<b>h</b>) ROC curves of DL models on training set and test set.</p> "> Figure 7
<p>ML and DL models’ DCA curves on the test set. (<b>a</b>) The DCA curves of the SVM models on the test set, (<b>b</b>) the DCA curves of the LR models on the test set, (<b>c</b>) the DCA curves of RF models on the test set, and (<b>d</b>) the DCA curves of the DL modes on the test set.</p> ">
1. Introduction
2. Materials and Methods
2.1. Study Population and Clinical Pathological Characteristics
2.2. MRI Protocol
2.3. ROI Segmentation
2.4. Radiomics Feature Extraction and Selection
2.5. Construction and Validation of ML Radiomics Models
2.6. Construction and Validation of DL Models
2.7. Statistical Analysis
3. Results
3.1. Clinical Baseline Characteristics
3.2. Radiomics Feature Extraction and Selection
3.3. Performance of ML Radiomics Models
3.4. Performance of DL Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.W.; Liu, S.Q.; Qi, G.F.; Ye, J.; Hong, L.Z.; Wu, W.X.; Jiang, Y. Development and Validation of Clinical-Radiomics Nomogram for Preoperative Prediction of Central Lymph Node Metastasis in Papillary Thyroid Carcinoma. Acad. Radiol. 2024, 31, 2292–2305. [Google Scholar] [CrossRef] [PubMed]
- Grimm, D. Cell and Molecular Biology of Thyroid Disorders 2.0. Int. J. Mol. Sci. 2021, 22, 1990. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.; Liu, C.; Liu, J.J.; Hao, Y.H.; Shi, Y.P.; Zhang, X.X.; Zhang, Y.J.; Zhao, Y.F.; Liu, L.P. Analysis of the Relevance of the Ultrasonographic Features of Papillary Thyroid Carcinoma and Cervical Lymph Node Metastasis on Conventional and Contrast-Enhanced Ultrasonography. Front. Oncol. 2021, 11, 794399. [Google Scholar] [CrossRef]
- Wang, Z.; Qu, L.; Chen, Q.; Zhou, Y.; Duan, H.; Li, B.; Weng, Y.; Su, J.; Yi, W. Deep learning-based multifeature integration robustly predicts central lymph node metastasis in papillary thyroid cancer. BMC Cancer 2023, 23, 128. [Google Scholar] [CrossRef]
- Zhou, Y.; Su, G.Y.; Hu, H.; Tao, X.W.; Ge, Y.Q.; Si, Y.; Shen, M.P.; Xu, X.Q.; Wu, F.Y. Radiomics from Primary Tumor on Dual-Energy CT Derived Iodine Maps can Predict Cervical Lymph Node Metastasis in Papillary Thyroid Cancer. Acad. Radiol. 2022, 29 (Suppl. S3), S222–S231. [Google Scholar] [CrossRef]
- Zhao, H.; Huang, T.; Li, H. Risk factors for skip metastasis and lateral lymph node metastasis of papillary thyroid cancer. Surgery 2019, 166, 55–60. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, W.; Yang, Y.; Xu, Z.; Lin, Y.; Lang, T.; Lei, S.; Xiao, Y.; Yang, W.; Huang, W.; et al. An integrated model incorporating deep learning, hand-crafted radiomics and clinical and US features to diagnose central lymph node metastasis in patients with papillary thyroid cancer. BMC Cancer 2024, 24, 69. [Google Scholar] [CrossRef]
- Kim, E.; Park, J.S.; Son, K.R.; Kim, J.H.; Jeon, S.J.; Na, D.G. Preoperative diagnosis of cervical metastatic lymph nodes in papillary thyroid carcinoma: Comparison of ultrasound, computed tomography, and combined ultrasound with computed tomography. Thyroid 2008, 18, 411–418. [Google Scholar] [CrossRef]
- Mulla, M.; Schulte, K.-M. Central cervical lymph node metastases in papillary thyroid cancer: A systematic review of imaging-guided and prophylactic removal of the central compartment. Clin. Endocrinol. 2012, 76, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Giordano, D.; Valcavi, R.; Thompson, G.B.; Pedroni, C.; Renna, L.; Gradoni, P.; Barbieri, V. Complications of central neck dissection in patients with papillary thyroid carcinoma: Results of a study on 1087 patients and review of the literature. Thyroid 2012, 22, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Mazurowski, M.A.; Buda, M.; Saha, A.; Bashir, M.R. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI. J. Magn. Reson. Imaging 2019, 49, 939–954. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.-K.; Ren, T.-T.; Yin, Y.-F.; Shi, H.; Wang, H.-X.; Zhou, B.-Y.; Wang, X.-R.; Li, X.; Zhang, Y.-F.; Liu, C.; et al. A Comparative Analysis of Two Machine Learning-Based Diagnostic Patterns with Thyroid Imaging Reporting and Data System for Thyroid Nodules: Diagnostic Performance and Unnecessary Biopsy Rate. Thyroid 2021, 31, 470–481. [Google Scholar] [CrossRef]
- Zhang, B.; Tian, J.; Pei, S.; Chen, Y.; He, X.; Dong, Y.; Zhang, L.; Mo, X.; Huang, W.; Cong, S.; et al. Machine Learning-Assisted System for Thyroid Nodule Diagnosis. Thyroid 2019, 29, 858–867. [Google Scholar] [CrossRef]
- Wang, X.; Agyekum, E.A.; Ren, Y.; Zhang, J.; Zhang, Q.; Sun, H.; Zhang, G.; Xu, F.; Bo, X.; Lv, W.; et al. A Radiomic Nomogram for the Ultrasound-Based Evaluation of Extrathyroidal Extension in Papillary Thyroid Carcinoma. Front. Oncol. 2021, 11, 625646. [Google Scholar] [CrossRef]
- Kwon, M.R.; Shin, J.H.; Park, H.; Cho, H.; Hahn, S.Y.; Park, K.W. Radiomics Study of Thyroid Ultrasound for Predicting BRAF Mutation in Papillary Thyroid Carcinoma: Preliminary Results. Am. J. Neuroradiol. 2020, 41, 700–705. [Google Scholar] [CrossRef]
- Wu, G.-G.; Lv, W.-Z.; Yin, R.; Xu, J.-W.; Yan, Y.-J.; Chen, R.-X.; Wang, J.-Y.; Zhang, B.; Cui, X.-W.; Dietrich, C.F. Deep Learning Based on ACR TI-RADS Can Improve the Differential Diagnosis of Thyroid Nodules. Front. Oncol. 2021, 11, 575166. [Google Scholar] [CrossRef]
- Wang, C.; Yu, P.; Zhang, H.; Han, X.; Song, Z.; Zheng, G.; Wang, G.; Zheng, H.; Mao, N.; Song, X. Artificial intelligence-based prediction of cervical lymph node metastasis in papillary thyroid cancer with CT. Eur. Radiol. 2023, 33, 6828–6840. [Google Scholar] [CrossRef]
- Li, J.; Wu, X.; Mao, N.; Zheng, G.; Zhang, H.; Mou, Y.; Jia, C.; Mi, J.; Song, X. Computed Tomography-Based Radiomics Model to Predict Central Cervical Lymph Node Metastases in Papillary Thyroid Carcinoma: A Multicenter Study. Front. Endocrinol. 2021, 12, 741698. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Wang, H.; Wei, R.; Wang, L.; Dai, Z.; Duan, S.; Ge, Y.; Wu, P.-Y.; Song, B. MRI-based radiomics analysis to predict preoperative lymph node metastasis in papillary thyroid carcinoma. Gland. Surg. 2020, 9, 1214–1226. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hu, S.; Wang, X.; He, J.; Liu, W.; Yu, C.; Sun, Z.; Ge, Y.; Duan, S. Prediction of Cervical Lymph Node Metastasis Using MRI Radiomics Approach in Papillary Thyroid Carcinoma: A Feasibility Study. Technol. Cancer Res. Treat. 2020, 19, 1533033820969451. [Google Scholar] [CrossRef] [PubMed]
- Park, V.Y.; Han, K.; Seong, Y.K.; Park, M.H.; Kim, E.-K.; Moon, H.J.; Yoon, J.H.; Kwak, J.Y. Diagnosis of Thyroid Nodules: Performance of a Deep Learning Convolutional Neural Network Model vs. Radiologists. Sci. Rep. 2019, 9, 17843. [Google Scholar] [CrossRef]
- Buda, M.; Wildman-Tobriner, B.; Hoang, J.K.; Thayer, D.; Tessler, F.N.; Middleton, W.D.; Mazurowski, M.A. Management of Thyroid Nodules Seen on US Images: Deep Learning May Match Performance of Radiologists. Radiology 2019, 292, 695–701. [Google Scholar] [CrossRef]
- van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.-C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef]
- O’Connor, J.P.B.; Rose, C.J.; Waterton, J.C.; Carano, R.A.D.; Parker, G.J.M.; Jackson, A. Imaging intratumor heterogeneity: Role in therapy response, resistance, and clinical outcome. Clin. Cancer Res. 2015, 21, 249–257. [Google Scholar] [CrossRef]
- Moon, S.H.; Kim, J.; Joung, J.-G.; Cha, H.; Park, W.-Y.; Ahn, J.S.; Ahn, M.-J.; Park, K.; Choi, J.Y.; Lee, K.-H.; et al. Correlations between metabolic texture features, genetic heterogeneity, and mutation burden in patients with lung cancer. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 446–454. [Google Scholar] [CrossRef]
- Demircioğlu, A. Are deep models in radiomics performing better than generic models? A systematic review. Eur. Radiol. Exp. 2023, 7, 11. [Google Scholar] [CrossRef]
- Wang, W.; Liang, H.; Zhang, Z.; Xu, C.; Wei, D.; Li, W.; Qian, Y.; Zhang, L.; Liu, J.; Lei, D. Comparing three-dimensional and two-dimensional deep-learning, radiomics, and fusion models for predicting occult lymph node metastasis in laryngeal squamous cell carcinoma based on CT imaging: A multicentre, retrospective, diagnostic study. eClinicalMedicine 2024, 67, 102385. [Google Scholar] [CrossRef]
- Li, J.; Wang, P.; Zhou, Y.; Liang, H.; Luan, K. Different Machine Learning and Deep Learning Methods for the Classification of Colorectal Cancer Lymph Node Metastasis Images. Front. Bioeng. Biotechnol. 2020, 8, 620257. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, Y.; He, D.; Lai, L.; Chen, J.; Zhang, T.; Mao, H. Machine Learning-Based Shear Wave Elastography Elastic Index (SWEEI) in Predicting Cervical Lymph Node Metastasis of Papillary Thyroid Microcarcinoma: A Comparative Analysis of Five Practical Prediction Models. Cancer Manag. Res. 2022, 14, 2847–2858. [Google Scholar] [CrossRef] [PubMed]
Characteristics | CLNM (+) (n = 50) | CLNM (−) (n = 55) | p Value |
---|---|---|---|
Age, Mean ± SD | 44.62 ± 11.68 | 47.62 ± 11.57 | 0.190 |
Diameter, M (Q1, Q3) | 1.15 (0.80, 1.65) | 1.00 (0.60, 1.50) | 0.037 * |
Gender, n (%) | 0.105 | ||
Male | 17 (34.00) | 11 (20.00) | |
Female | 33 (66.00) | 44 (80.00) | |
ETE, n (%) | 0.044 * | ||
Yes | 28 (56.00) | 20 (36.36) | |
No | 22 (44.00) | 35 (63.64) | |
Multifocal, n (%) | 0.163 | ||
Yes | 17 (34.00) | 12 (21.82) | |
No | 33 (66.00) | 43 (78.18) | |
Biliteral, n (%) | 0.150 | ||
Yes | 14 (28.00) | 9 (16.36) | |
No | 36 (72.00) | 46 (83.64) | |
Calcification, n (%) | 0.679 | ||
Yes | 1 (2.00) | 3 (5.45) | |
No | 49 (98.00) | 52 (94.55) | |
Benign lesions, n (%) | 0.654 | ||
Yes | 26 (52.00) | 31 (56.36) | |
No | 24 (48.00) | 24 (43.64) |
OR (95% CI) | p Value | |
---|---|---|
Age | 0.937 (0.864–1.017) | 0.190 |
Diameter | 1.137 (1.050–1.231) | 0.008 * |
Gender | 1.083 (0.998–1.174) | 0.107 |
ETE | 1.104 (1.018–1.196) | 0.044 * |
Multifocality | 1.071 (0.987–1.162) | 0.166 |
Bilateral | 1.073 (0.980–1.164) | 0.153 |
Calcification | 0.956 (0.881–1.038) | 0.361 |
Benign lesion | 0.978 (0.881–1.038) | 0.658 |
Characteristics | Training Cohort (n = 84) | Test Cohort (n = 21) | p Value |
---|---|---|---|
Age, Mean ± SD | 46.38 ± 11.91 | 45.43 ± 10.84 | 0.740 |
Diameter, M (Q1, Q3) | 1.10 (0.70–1.50) | 0.80 (0.60–1.80) | 0.782 |
CLNM, n (%) | 0.329 | ||
Positive | 42 (50.00) | 8 (38.10) | |
Negative | 42 (50.00) | 13 (61.90) | |
Gender, n (%) | 0.741 | ||
Male | 23 (27.38) | 5 (23.81) | |
Female | 61 (72.62) | 16 (76.19) | |
ETE, n (%) | 0.493 | ||
Yes | 37 (44.05) | 11 (52.38) | |
No | 47 (55.95) | 10 (47.62) | |
Multifocal, n (%) | 0.913 | ||
Yes | 23 (27.38) | 6 (28.57) | |
No | 61 (72.62) | 15 (71.43) | |
Biliteral, n (%) | 1.000 | ||
Yes | 18 (21.43) | 5 (23.81) | |
No | 66 (78.57) | 16 (76.19) | |
Calcification, n (%) | 0.581 | ||
Yes | 4 (4.76) | 0 (0.00) | |
No | 80 (95.24) | 21 (100.00) | |
Benign lesions, n (%) | 0.433 | ||
Yes | 44 (52.38) | 13 (61.90) | |
No | 40 (47.62) | 8 (38.10) |
Sequence | Feature Name |
---|---|
Best T1 features | original_gldm_DependenceNonUniformityNormalized |
log-sigma-2-0-mm-3D_firstorder_Skewness | |
log-sigma-2-0-mm-3D_glcm_ClusterShade | |
log-sigma-2-0-mm-3D_gldm_LargeDependenceLowGrayLevelEmphasis | |
log-sigma-4-0-mm-3D_firstorder_10Percentile | |
log-sigma-4-0-mm-3D_glszm_SmallAreaEmphasis | |
log-sigma-5-0-mm-3D_glcm_Idn | |
wavelet-LH_glszm_GrayLevelNonUniformity | |
wavelet-HH_firstorder_Skewness | |
wavelet-HH_glcm_ClusterShade | |
Best T2 features | log-sigma-2-0-mm-3D_glcm_Imc1 |
log-sigma-3-0-mm-3D_gldm_DependenceNonUniformityNormalized | |
log-sigma-4-0-mm-3D_gldm_GrayLevelNonUniformity | |
log-sigma-5-0-mm-3D_glrlm_RunVariance | |
log-sigma-5-0-mm-3D_ngtdm_Contrast | |
wavelet-LH_glcm_Imc1 | |
wavelet-HH_glcm_Imc1 | |
wavelet-HH_glcm_Imc2 | |
Best T1 + T2 features | log-sigma-2-0-mm-3D_glcm_ClusterShade |
wavelet-HH_glcm_ClusterShade | |
log-sigma-2-0-mm-3D_firstorder_Skewness | |
log-sigma-4-0-mm-3D_firstorder_10Percentile | |
log-sigma-5-0-mm-3D_glrlm_RunVariance | |
log-sigma-2-0-mm-3D_gldm_LowGrayLevelEmphasis | |
wavelet-HH_ngtdm_Busyness | |
log-sigma-3-0-mm-3D_gldm_DependenceNonUniformityNormalized | |
log-sigma-2-0-mm-3D_glcm_Imc1 | |
log-sigma-4-0-mm-3D_glrlm_RunVariance | |
log-sigma-5-0-mm-3D_ngtdm_Contrast | |
wavelet-LH_glcm_Imc1 | |
wavelet-HH_glcm_MCC | |
log-sigma-4-0-mm-3D_gldm_DependenceNonUniformityNormalized | |
original_shape_Flatness | |
log-sigma-5-0-mm-3D_glszm_ZoneVariance |
SVM Models | Set | AUC (95% CI) | ACC | SEN | SPE | PPV | NPV |
---|---|---|---|---|---|---|---|
T1 | Training | 0.716 (0.599–0.821) | 0.655 | 0.425 | 0.864 | 0.739 | 0.623 |
T2 | Training | 0.624 (0.505–0.744) | 0.571 | 0.825 | 0.341 | 0.532 | 0.682 |
T1 + T2 | Training | 0.777 (0.663–0.876) | 0.679 | 0.800 | 0.568 | 0.628 | 0.758 |
T1 + Clinical | Training | 0.665 (0.553–0.779) | 0.631 | 0.425 | 0.818 | 0.680 | 0.610 |
T2 + Clinical | Training | 0.610 (0.494–0.730) | 0.607 | 0.875 | 0.364 | 0.556 | 0.762 |
T1 + T2 + Clinical | Training | 0.770 (0.664–0.868) | 0.690 | 0.775 | 0.614 | 0.646 | 0.750 |
T1 | Test | 0.664 (0.398–0.900) | 0.714 | 0.700 | 0.727 | 0.700 | 0.727 |
T2 | Test | 0.600 (0.324–0.852) | 0.476 | 0.500 | 0.455 | 0.455 | 0.500 |
T1 + T2 | Test | 0.727 (0.479–0.935) | 0.714 | 0.700 | 0.727 | 0.700 | 0.727 |
T1 + Clinical | Test | 0.664 (0.418–0.885) | 0.667 | 0.700 | 0.636 | 0.636 | 0.700 |
T2 + Clinical | Test | 0.655 (0.391–0.889) | 0.571 | 0.600 | 0.545 | 0.546 | 0.600 |
T1 + T2 + Clinical | Test | 0.764 (0.510–0.971) | 0.714 | 0.700 | 0.727 | 0.700 | 0.727 |
LR Models | Set | AUC (95% CI) | ACC | SEN | SPE | PPV | NPV |
---|---|---|---|---|---|---|---|
T1 | Training | 0.820 (0.724–0.905) | 0.762 | 0.675 | 0.841 | 0.794 | 0.740 |
T2 | Training | 0.725 (0.609–0.829) | 0.667 | 0.700 | 0.636 | 0.636 | 0.700 |
T1 + T2 | Training | 0.799 (0.707–0.886) | 0.655 | 0.900 | 0.432 | 0.590 | 0.826 |
T1 + Clinical | Training | 0.816 (0.704–0.905) | 0.738 | 0.675 | 0.795 | 0.750 | 0.729 |
T2 + Clinical | Training | 0.730 (0.617–0.831) | 0.631 | 0.725 | 0.545 | 0.592 | 0.686 |
T1 + T2 + Clinical | Training | 0.805 (0.704–0.892) | 0.690 | 0.900 | 0.500 | 0.621 | 0.846 |
T1 | Test | 0.709 (0.472–0.926) | 0.714 | 0.700 | 0.727 | 0.700 | 0.727 |
T2 | Test | 0.718 (0.469–0.945) | 0.714 | 0.700 | 0.727 | 0.700 | 0.727 |
T1 + T2 | Test | 0.791 (0.548–0.963) | 0.762 | 0.800 | 0.727 | 0.727 | 0.800 |
T1 + Clinical | Test | 0.664 (0.417–0.904) | 0.667 | 0.700 | 0.636 | 0.636 | 0.700 |
T2 + Clinical | Test | 0.727 (0.455–0.959) | 0.714 | 0.700 | 0.727 | 0.700 | 0.727 |
T1 + T2 + Clinical | Test | 0.791 (0.577–0.962) | 0.762 | 0.800 | 0.727 | 0.727 | 0.800 |
RF Models | Set | AUC (95% CI) | ACC | SEN | SPE | PPV | NPV |
---|---|---|---|---|---|---|---|
T1 | Training | 0.995 (0.985–1.000) | 0.952 | 0.950 | 0.955 | 0.950 | 0.955 |
T2 | Training | 0.972 (0.936–0.997) | 0.917 | 0.950 | 0.886 | 0.884 | 0.951 |
T1 + T2 | Training | 0.854 (0.773–0.929) | 0.726 | 0.875 | 0.591 | 0.660 | 0.839 |
T1 + Clinical | Training | 0.994 (0.981–1.000) | 0.952 | 0.925 | 0.977 | 0.974 | 0.935 |
T2 + Clinical | Training | 0.978 (0.949–0.998) | 0.940 | 0.925 | 0.955 | 0.949 | 0.933 |
T1 + T2 + Clinical | Training | 0.842 (0.754–0.918) | 0.714 | 0.850 | 0.591 | 0.654 | 0.813 |
T1 | Test | 0.600 (0.357–0.847) | 0.571 | 0.600 | 0.545 | 0.546 | 0.600 |
T2 | Test | 0.600 (0.333–0.866) | 0.667 | 0.700 | 0.636 | 0.636 | 0.700 |
T1 + T2 | Test | 0.836 (0.618–1.000) | 0.857 | 0.900 | 0.818 | 0.818 | 0.900 |
T1 + Clinical | Test | 0.609 (0.327–0.846) | 0.619 | 0.600 | 0.636 | 0.600 | 0.636 |
T2 + Clinical | Test | 0.673 (0.422–0.900) | 0.571 | 0.500 | 0.636 | 0.556 | 0.583 |
T1 + T2 + Clinical | Test | 0.836 (0.611–1.000) | 0.810 | 0.800 | 0.818 | 0.800 | 0.818 |
DL Models | Set | AUC (95% CI) | ACC | SEN | SPE | PPV | NPV |
---|---|---|---|---|---|---|---|
T1 | Training | 0.895 (0.826–0.963) | 0.845 | 0.825 | 0.864 | 0.846 | 0.844 |
T2 | Training | 0.856 (0.767–0.945) | 0.881 | 0.825 | 0.932 | 0.917 | 0.854 |
T1 + T2 | Training | 0.977 (0.950–1.000) | 0.940 | 0.975 | 0.909 | 0.907 | 0.976 |
T1 + Clinical | Training | 0.816 (0.723–0.910) | 0.786 | 0.875 | 0.705 | 0.729 | 0.861 |
T2 + Clinical | Training | 0.957 (0.920–0.994) | 0.881 | 0.900 | 0.864 | 0.857 | 0.905 |
Fusion | Training | 0.980 (0.956–1.000) | 0.940 | 0.950 | 0.932 | 0.927 | 0.953 |
T1 | Test | 0.718 (0.490–0.946) | 0.714 | 0.700 | 0.727 | 0.700 | 0.727 |
T2 | Test | 0.745 (0.514–0.977) | 0.762 | 0.700 | 0.818 | 0.778 | 0.750 |
T1 + T2 | Test | 0.827 (0.613–1.000) | 0.857 | 0.900 | 0.818 | 0.818 | 0.900 |
T1 + Clinical | Test | 0.745 (0.522–0.969) | 0.762 | 0.800 | 0.727 | 0.727 | 0.800 |
T2 + Clinical | Test | 0.800 (0.593–1.000) | 0.810 | 0.800 | 0.818 | 0.800 | 0.818 |
Fusion | Test | 0.891 (0.745–1.000) | 0.857 | 0.800 | 0.909 | 0.889 | 0.833 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, H.; Fan, H.; Yang, X.; Fan, J.; Wu, P.; Ni, Y.; Hu, S. Multimodal MRI Deep Learning for Predicting Central Lymph Node Metastasis in Papillary Thyroid Cancer. Cancers 2024, 16, 4042. https://doi.org/10.3390/cancers16234042
Wang X, Zhang H, Fan H, Yang X, Fan J, Wu P, Ni Y, Hu S. Multimodal MRI Deep Learning for Predicting Central Lymph Node Metastasis in Papillary Thyroid Cancer. Cancers. 2024; 16(23):4042. https://doi.org/10.3390/cancers16234042
Chicago/Turabian StyleWang, Xiuyu, Heng Zhang, Hang Fan, Xifeng Yang, Jiansong Fan, Puyeh Wu, Yicheng Ni, and Shudong Hu. 2024. "Multimodal MRI Deep Learning for Predicting Central Lymph Node Metastasis in Papillary Thyroid Cancer" Cancers 16, no. 23: 4042. https://doi.org/10.3390/cancers16234042
APA StyleWang, X., Zhang, H., Fan, H., Yang, X., Fan, J., Wu, P., Ni, Y., & Hu, S. (2024). Multimodal MRI Deep Learning for Predicting Central Lymph Node Metastasis in Papillary Thyroid Cancer. Cancers, 16(23), 4042. https://doi.org/10.3390/cancers16234042