One-Pot Synthesis of Highly Dispersed VO2 on g-C3N4 Nanomeshes for Advanced Oxidation
<p>(<b>a</b>) XRD patterns and (<b>b</b>) N<sub>2</sub> adsorption–desorption isotherms of the g-C<sub>3</sub>N<sub>4</sub>, V-g-C<sub>3</sub>N<sub>4</sub> and V-g-C<sub>3</sub>N<sub>4</sub>-im samples.</p> "> Figure 2
<p>SEM images of the as-prepared (<b>a</b>) g-C<sub>3</sub>N<sub>4</sub>, (<b>b</b>,<b>c</b>) V-g-C<sub>3</sub>N<sub>4</sub>, and (<b>d</b>) V-g-C<sub>3</sub>N<sub>4</sub>-im. (<b>e</b>) HAADF-STEM and elemental mapping of V-g-C<sub>3</sub>N<sub>4</sub>.</p> "> Figure 3
<p>(<b>a</b>) XPS analysis of N1s; (<b>b</b>) the structure of the g-C<sub>3</sub>N<sub>4</sub> and (<b>c</b>) XPS analysis of V2p inV-g-C<sub>3</sub>N<sub>4</sub> and V-g-C<sub>3</sub>N<sub>4</sub>-im samples.</p> "> Figure 4
<p>(<b>a</b>) Removal efficiencies of the MB over various catalysts; (<b>b</b>) kinetic linear simulation curves and (<b>c</b>) the corresponding reaction rate constants for various catalysts. (<b>d</b>) The reusability of V-g-C<sub>3</sub>N<sub>4</sub> for MB removal.</p> "> Figure 5
<p>(<b>a</b>) Scavenger trapping experiments over V-g-C<sub>3</sub>N<sub>4</sub>. (<b>b</b>) EPR spectra using DMPO as the trapping reagent over V-g-C<sub>3</sub>N<sub>4</sub>. (<b>c</b>) A possible reaction mechanism for V-g-C<sub>3</sub>N<sub>4</sub> catalyzed MB removal.</p> "> Scheme 1
<p>Schematic illustration of the one-pot synthetic process for V-g-C<sub>3</sub>N<sub>4</sub> nanostructures.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ismail, G.A.; Sakai, H. Review on effect of different type of dyes on advanced oxidation processes (AOPs) for textile color removal. Chemosphere 2022, 291, 132906. [Google Scholar] [CrossRef] [PubMed]
- Madi, K.; Chebli, D.; Ait Youcef, H.; Tahraoui, H.; Bouguettoucha, A.; Kebir, M.; Zhang, J.; Amrane, A. Green Fabrication of ZnO Nanoparticles and ZnO/rGO Nanocomposites from Algerian Date Syrup Extract: Synthesis, Characterization, and Augmented Photocatalytic Efficiency in Methylene Blue Degradation. Catalysts 2024, 14, 62. [Google Scholar] [CrossRef]
- Li, N.; He, X.; Ye, J.; Dai, H.; Peng, W.; Cheng, Z.; Yan, B.; Chen, G.; Wang, S. H2O2 activation and contaminants removal in heterogeneous Fenton-like systems. J. Hazard. Mater. 2023, 458, 131926. [Google Scholar] [CrossRef] [PubMed]
- Moreira, F.C.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Appl. Catal. B 2017, 202, 217–261. [Google Scholar] [CrossRef]
- Liu, T.; Xiao, S.; Li, N.; Chen, J.; Zhou, X.; Qian, Y.; Huang, C.-H.; Zhang, Y. Water decontamination via nonradical process by nanoconfined Fenton-like catalysts. Nat. Commun. 2023, 14, 2881. [Google Scholar] [CrossRef]
- Saravanan, A.; Deivayanai, V.C.; Kumar, P.S.; Rangasamy, G.; Hemavathy, R.V.; Harshana, T.; Gayathri, N.; Alagumalai, K. A detailed review on advanced oxidation process in treatment of wastewater: Mechanism, challenges and future outlook. Chemosphere 2022, 308, 136524. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chem. Eng. J. 2020, 401, 126158. [Google Scholar] [CrossRef]
- Chen, W.; Zeng, M.; Yang, J. Preparation of Fenton Catalysts for Water Treatment. Catalysts 2023, 13, 1407. [Google Scholar] [CrossRef]
- Rana, A.G.; Tasbihi, M.; Schwarze, M.; Minceva, M. Efficient Advanced Oxidation Process (AOP) for Photocatalytic Contaminant Degradation Using Exfoliated Metal-Free Graphitic Carbon Nitride and Visible Light-Emitting Diodes. Catalysts 2021, 11, 662. [Google Scholar] [CrossRef]
- Yamaguchi, R.; Kurosu, S.; Suzuki, M.; Kawase, Y. Hydroxyl radical generation by zero-valent iron/Cu (ZVI/Cu) bimetallic catalyst in wastewater treatment: Heterogeneous Fenton/Fenton-like reactions by Fenton reagents formed in-situ under oxic conditions. Chem. Eng. J. 2018, 334, 1537–1549. [Google Scholar] [CrossRef]
- Hussain, S.; Aneggi, E.; Goi, D. Catalytic activity of metals in heterogeneous Fenton-like oxidation of wastewater contaminants: A review. Environ. Chem. Lett. 2021, 19, 2405–2424. [Google Scholar] [CrossRef]
- Ricardo, I.A.; Alberto, E.A.; Silva Júnior, A.H.; Macuvele, D.L.P.; Padoin, N.; Soares, C.; Gracher Riella, H.; Starling, M.C.V.M.; Trovó, A.G. A critical review on microplastics, interaction with organic and inorganic pollutants, impacts and effectiveness of advanced oxidation processes applied for their removal from aqueous matrices. Chem. Eng. J. 2021, 424, 130282. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J. Multivalent metal catalysts in Fenton/Fenton-like oxidation system: A critical review. Chem. Eng. J. 2023, 466, 143147. [Google Scholar] [CrossRef]
- Cheng, C.; Ren, W.; Miao, F.; Chen, X.; Chen, X.; Zhang, H. Generation of FeIV=O and its Contribution to Fenton-Like Reactions on a Single-Atom Iron−N−C Catalyst. Angew. Chem. Int. Ed. 2023, 62, e202218510. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.-H.; Pan, Y.; Wei, T.-T.; Zhang, A.-Y.; Si, Y.; Liu, C.; Sun, Z.-H.; Chen, J.-J.; Yu, H.-Q. Upcycling waste sewage sludge into superior single-atom Fenton-like catalyst for sustainable water purification. Nat. Water 2024, 2, 649–662. [Google Scholar] [CrossRef]
- Sauer, T.P.; Casaril, L.; Oberziner, A.L.B.; José, H.J.; Moreira, R.d.F.P.M. Advanced oxidation processes applied to tannery wastewater containing Direct Black 38—Elimination and degradation kinetics. J. Hazard. Mater. 2006, 135, 274–279. [Google Scholar] [CrossRef]
- Zubir, N.A.; Yacou, C.; Zhang, X.; Diniz da Costa, J.C. Optimisation of graphene oxide–iron oxide nanocomposite in heterogeneous Fenton-like oxidation of Acid Orange 7. J. Environ. Chem. Eng. 2014, 2, 1881–1888. [Google Scholar] [CrossRef]
- Ling, L.; Liu, Y.; Pan, D.; Lyu, W.; Xu, X.; Xiang, X.; Lyu, M.; Zhu, L. Catalytic detoxification of pharmaceutical wastewater by Fenton-like reaction with activated alumina supported CoMnAl composite metal oxides catalyst. Chem. Eng. J. 2020, 381, 122607. [Google Scholar] [CrossRef]
- Bouzayani, B.; Sanromán, M.Á. Polymer-Supported Heterogeneous Fenton Catalysts for the Environmental Remediation of Wastewater. Molecules 2024, 29, 2188. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Yoo, B.R. Advanced metal oxide (supported) catalysts: Synthesis and applications. J. Ind. Eng. Chem. 2014, 20, 3947–3959. [Google Scholar] [CrossRef]
- Munnik, P.; de Jongh, P.E.; de Jong, K.P. Recent Developments in the Synthesis of Supported Catalysts. Chem. Rev. 2015, 115, 6687–6718. [Google Scholar] [CrossRef] [PubMed]
- Flytzani-Stephanopoulos, M.; Gates, B.C. Atomically Dispersed Supported Metal Catalysts. Ann. Rev. Chem. Biomol. Eng. 2012, 3, 545–574. [Google Scholar] [CrossRef]
- Wei, Q.-X.; Zhang, A.-Y.; Yang, Z.; Hu, S.; Wang, D.-J.; Zhang, C.; Liu, C.; Liu, R. Oxygen-exfoliated cobalt-doped C3N4 for superior Fenton-like catalysis: The accessible metal exposure and synergistic pollutant adsorption from three-dimensional layered configuration. J. Environ. Chem. Eng. 2023, 11, 111067. [Google Scholar] [CrossRef]
- Védrine, J.C. Recent developments and prospectives of acid-base and redox catalytic processes by metal oxides. Appl. Catal. A 2019, 575, 170–179. [Google Scholar] [CrossRef]
- Li, J.; Zahid, M.; Sun, W.; Tian, X.; Zhu, Y. Synthesis of Pt supported on mesoporous g-C3N4 modified by ammonium chloride and its efficiently selective hydrogenation of furfural to furfuryl alcohol. Appl. Surf. Sci. 2020, 528, 146983. [Google Scholar] [CrossRef]
- Zhang, Y.-x.; Guo, X.-y.; Liu, B.; Zhang, J.-l.; Gao, X.-h.; Ma, Q.-x.; Fan, S.-b.; Zhao, T.-s. Surface modification of g-C3N4-supported iron catalysts for CO hydrogenation: Strategy for product distribution. Fuel 2021, 305, 121473. [Google Scholar] [CrossRef]
- Inagaki, M.; Tsumura, T.; Kinumoto, T.; Toyoda, M. Graphitic carbon nitrides (g-C3N4) with comparative discussion to carbon materials. Carbon 2019, 141, 580–607. [Google Scholar] [CrossRef]
- Yuan, M.; Yuan, H.; Xun, S.; Le, R.; Huang, Y.; He, M.; Zhu, L.; Zhu, W.; Li, H. VO2 uniformly supported by 3D g-C3N4: A highly effective catalyst for deep oxidative desulfurization. Fuel 2022, 319, 123792. [Google Scholar] [CrossRef]
- Tian, N.; Zhang, Y.; Li, X.; Xiao, K.; Du, X.; Dong, F.; Waterhouse, G.I.N.; Zhang, T.; Huang, H. Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution. Nano Energy 2017, 38, 72–81. [Google Scholar] [CrossRef]
- Reddy, I.N.; Reddy, L.V.; Jayashree, N.; Reddy, C.V.; Cho, M.; Kim, D.; Shim, J. Vanadium-doped graphitic carbon nitride for multifunctional applications: Photoelectrochemical water splitting and antibacterial activities. Chemosphere 2021, 264, 128593. [Google Scholar] [CrossRef]
- Cheng, W.; Zeng, G.; Niederberger, M. Design of vanadium oxide core–shell nanoplatelets for lithium ion storage. J. Mater. Chem. A 2015, 3, 2861–2868. [Google Scholar] [CrossRef]
- Huang, B.L.; Zhang, H.; Qiu, Z.; Liu, P.; Cao, F.; He, X.; Xia, Y.; Liang, X.; Wang, C.; Wan, W.; et al. Hyphae Carbon Coupled with Gel Composite Assembly for Construction of Advanced Carbon/Sulfur Cathodes for Lithium–Sulfur Batteries. Small 2024, 20, 2307579. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yin, H.; Nie, Q.; Zou, S. Highly Dispersed Vanadia Anchored on Protonated g-C3N4 as an Efficient and Selective Catalyst for the Hydroxylation of Benzene into Phenol. Molecules 2022, 27, 6965. [Google Scholar] [CrossRef] [PubMed]
- Alcudia-Ramos, M.A.; Fuentez-Torres, M.O.; Ortiz-Chi, F.; Espinosa-González, C.G.; Hernández-Como, N.; García-Zaleta, D.S.; Kesarla, M.K.; Torres-Torres, J.G.; Collins-Martínez, V.; Godavarthi, S. Fabrication of g-C3N4/TiO2 heterojunction composite for enhanced photocatalytic hydrogen production. Ceram. Int. 2020, 46, 38–45. [Google Scholar] [CrossRef]
- Balakhonov, S.V.; Efremova, M.V.; Ivanov, V.K.; Churagulov, B.R. Facile synthesis of vanadia aerogels with controlled V3+/V4+ ratio. Mater. Lett. 2015, 156, 109–112. [Google Scholar] [CrossRef]
- Liu, J.; Zou, S.; Lou, B.; Chen, C.; Xiao, L.; Fan, J. Interfacial Electronic Interaction Induced Engineering of ZnO-BiOI Heterostructures for Efficient Visible-Light Photocatalysis. Inorg. Chem. 2019, 58, 8525–8532. [Google Scholar] [CrossRef]
- Shoran, S.; Dahiya, S.; Rani, M.; Nehra, S.P.; Sharma, A.; Chaudhary, S. Synergistic photocatalysis of VO2-A/g-C3N4 composites for efficient degradation of anionic and cationic dyes: Towards a sustainable environmental solution. Appl. Surf. Sci. 2025, 684, 161852. [Google Scholar] [CrossRef]
- Adeleke, J.T.; Theivasanthi, T.; Thiruppathi, M.; Swaminathan, M.; Akomolafe, T.; Alabi, A.B. Photocatalytic degradation of methylene blue by ZnO/NiFe2O4 nanoparticles. Appl. Surf. Sci. 2018, 455, 195–200. [Google Scholar] [CrossRef]
- Oladoye, P.O.; Ajiboye, T.O.; Omotola, E.O.; Oyewola, O.J. Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results Eng. 2022, 16, 100678. [Google Scholar] [CrossRef]
- Liu, J.; Yin, H.; Nie, Q.; Wang, H.; Zhou, J.; Zou, S. Encapsulating Mn3O4 Nanorods in a Shell of SiO2 Nanobubbles for Confined Fenton-Type Catalysis. Inorg. Chem. 2021, 60, 16658–16665. [Google Scholar] [CrossRef]
- Jia, H.; Liu, Q.; Si, J.; Chen, Y.; Zhou, G.; Lan, H.; He, W. Oxidation engineering triggered peroxidase-like activity of VOxC for detection of dopamine and glutathione. Nanoscale Adv. 2023, 5, 5799–5809. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Liu, H.; Ye, L.; Huang, Y.; Liu, X.; Huang, D. Revealing the primary role of the V4+/V5+ cycle in InVO4 catalysts for promoting the photo-Fenton reaction. Environm. Sci. Nano 2024, 11, 942–950. [Google Scholar] [CrossRef]
- Du, G.; Espenson, J.H. Oxidation of Vanadium(III) by Hydrogen Peroxide and the Oxomonoperoxo Vanadium(V) Ion in Acidic Aqueous Solutions: A Kinetics and Simulation Study. Inorg. Chem. 2005, 44, 5514–5522. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, Y.; Zhang, Y.; Wei, K.; Wang, Y.; Zou, S.; Liu, J. One-Pot Synthesis of Highly Dispersed VO2 on g-C3N4 Nanomeshes for Advanced Oxidation. Catalysts 2024, 14, 892. https://doi.org/10.3390/catal14120892
Deng Y, Zhang Y, Wei K, Wang Y, Zou S, Liu J. One-Pot Synthesis of Highly Dispersed VO2 on g-C3N4 Nanomeshes for Advanced Oxidation. Catalysts. 2024; 14(12):892. https://doi.org/10.3390/catal14120892
Chicago/Turabian StyleDeng, Yangzhou, Yuqi Zhang, Kunkun Wei, Yue Wang, Shihui Zou, and Juanjuan Liu. 2024. "One-Pot Synthesis of Highly Dispersed VO2 on g-C3N4 Nanomeshes for Advanced Oxidation" Catalysts 14, no. 12: 892. https://doi.org/10.3390/catal14120892
APA StyleDeng, Y., Zhang, Y., Wei, K., Wang, Y., Zou, S., & Liu, J. (2024). One-Pot Synthesis of Highly Dispersed VO2 on g-C3N4 Nanomeshes for Advanced Oxidation. Catalysts, 14(12), 892. https://doi.org/10.3390/catal14120892