Engineering of GH11 Xylanases for Optimal pH Shifting for Industrial Applications
"> Figure 1
<p>Industrial application of xylanases.</p> "> Figure 2
<p>Retaining catalytic mechanism of GH11 xylanase with double-displacement of two glutamate residues.</p> "> Figure 3
<p>GH11 xylanases structure and sequence alignments of GH11 family members: (<b>A</b>) crystal structure of GH11 from <span class="html-italic">Trichoderma reesei</span> (PDB code: 1ENX); (<b>B</b>) electrostatic surface of TrGH11 with xylohexose; (<b>C</b>) close-up view of the active site of TrGH11 complexed with xylohexose (PDB code: 4HK8); (<b>D</b>) structure-based sequence alignment of GH11 from <span class="html-italic">Trichoderma reesei</span> (TrGH11, UniProt: P36217)<span class="html-italic">, Niallia circulans</span> (NcGH11, P09850), <span class="html-italic">Bacillus subtilis</span> (BsGH11, P18429), <span class="html-italic">Streptomyces olivaceoviridis</span> (SoGH11, A0A7G1MBT0), and <span class="html-italic">Aspergillus niger</span> (AnGH11, UniProt: P55329).</p> "> Figure 4
<p>BsXynA engineering using the DE method: (<b>A</b>) experimental engineering procedure of BaXynA; (<b>B</b>) crystal structure of wide-type BsXynA (PDB code 1XXN); (<b>C</b>) model structure of BsXynA mutant (Q7H/G13R/S22P/S31Y/T44A/I51V/I107L/S179C).</p> "> Figure 5
<p>Engineering of reBaxA using the DE method: (<b>A</b>) experimental engineering procedure of reBaxA50; (<b>B</b>) crystal structure of reBaxA (PDB code: 2DCY) and close-up view of the interactions between E106, Q155, and S138 residues; (<b>C</b>) model structure of reBaxA50 and close-up view of the interactions of between E106, Q155, and T138 residues.</p> "> Figure 6
<p>AnXynB engineering: (<b>A</b>) comparison of the eight residues involved in alkaliphilic adaptation in the loop sequence of GH11 AnXynB with those in other xylanases; (<b>B</b>) cartoon and electrostatic surface model structures of AnXynB (UniProt: P55330) generated by AlphaFold2; (<b>C</b>) electrostatic surface of modeling structure of AnXynB mutant (D117N and Q164K).</p> "> Figure 7
<p>Electrostatic surface representation of the model structure of TIXynA and its mutants.</p> "> Figure 8
<p>Engineering and model structure of CbX-CD: (<b>A</b>) the three-stage rational evolution process of CbX-CD. The original figure was obtained from a previous study [<a href="#B36-catalysts-13-01405" class="html-bibr">36</a>] and modified; (<b>B</b>) the model structure of the CbX-CD M31 mutant. The positive mutated and catalytic residues are indicated by green and cyan sticks, respectively.</p> "> Figure 9
<p>CFXyl3 N-terminal residues engineering: (<b>A</b>) partial N-terminal sequence alignment of CFXyl3 with GH11 xylanases from <span class="html-italic">Streptomyces</span> sp. (WP_093661817.1), <span class="html-italic">Saccharothrix</span> sp. (NUT48201.1), <span class="html-italic">Micromonospora</span> sp. (WP_168002960.1), and <span class="html-italic">H. cretacea</span> (WP_051760875.1); (<b>B</b>) partial N-terminal sequence alignment of CFXyl3 with engineered EcsXyl1–4. The mutated sites in EcsXyl1–4 are indicated by blue boxes; (<b>C</b>) positions of the mutation sites in EcsXyl1–4; (<b>D</b>) optimal temperature, (<b>E</b>) optimal pH, (<b>F</b>) thermal stability at 70 °C, and (<b>G</b>) pH stability of CFxyl3 and EcsXyl1–4. Original figures (<b>E</b>–<b>H</b>) were obtained from a previous study [<a href="#B45-catalysts-13-01405" class="html-bibr">45</a>].</p> "> Figure 10
<p>CBM-fused xylanases pH profile: (<b>A</b>) domain architectures (DAs) found in GH11 protein sequences in CAZy. Enzymatic activities of Xyn5, Xyn5-CBM2, and Xyn5-CBM9 on purified xylan (<b>B</b>) and rice straw (<b>C</b>). Original figures were obtained from a previous study [<a href="#B10-catalysts-13-01405" class="html-bibr">10</a>] and modified.</p> ">
Abstract
:1. Introduction
2. Functions and Structures of GH11 Xylanases
2.1. Catalytic Mechanisms
2.2. Structures
3. Engineering of GH11 Xylanases for Optimal pH Shifting
3.1. Directed Evolution (DE)
3.1.1. XynA from Bacillus subtilis (BsXynA)
3.1.2. BaxA from Bacillus amyloliquefaciens
3.2. Rational Engineering
3.2.1. Site-Directed Mutagenesis Engineering of XynB from Aspergillus niger
3.2.2. XynA from Thermomyces lanuginosus
3.2.3. Xylanase from Caldicellulosiruptor bescii
3.3. Modification of the N-Terminus of GH11 Xylanases
3.4. Carbohydrate-Binding Module (CBM)-Fused GH11 Xylanases
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bornscheuer, U.; Buchholz, K.; Seibel, J. Enzymatic Degradation of (Ligno)cellulose. Angew. Chem. Int. Ed. 2014, 53, 10876–10893. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Peng, P.; Xu, F.; Sun, R.-C. Fractional purification and bioconversion of hemicelluloses. Biotechnol. Adv. 2012, 30, 879–903. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.K.; Jung, M.W.; Kim, K.H.; Choi, I.-G. Optimal production of a novel endo-acting β-1,4-xylanase cloned from Saccharophagus degradans 2-40 into Escherichia coli BL21(DE3). New Biotechnol. 2009, 26, 157–164. [Google Scholar] [CrossRef]
- Cantarel, B.L.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for Glycogenomics. Nucleic Acids Res. 2009, 37, D233–D238. [Google Scholar] [CrossRef]
- Nguyen, S.T.C.; Freund, H.L.; Kasanjian, J.; Berlemont, R. Function, distribution, and annotation of characterized cellulases, xylanases, and chitinases from CAZy. Appl. Microbiol. Biotechnol. 2018, 102, 1629–1637. [Google Scholar] [CrossRef] [PubMed]
- Collins, T.; Gerday, C.; Feller, G. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 2005, 29, 3–23. [Google Scholar] [CrossRef]
- Paës, G.; Berrin, J.-G.; Beaugrand, J. GH11 xylanases: Structure/function/properties relationships and applications. Biotechnol. Adv. 2012, 30, 564–592. [Google Scholar] [CrossRef]
- Nam, K.H.; Park, S.; Park, J. Preliminary XFEL data from spontaneously grown endo-1,4-β-xylanase crystals from Hypocrea virens. Acta Crystallogr. F Struct. Biol. Commun. 2022, 78, 226–231. [Google Scholar] [CrossRef]
- Kim, I.J.; Kim, S.R.; Kim, K.H.; Bornscheuer, U.T.; Nam, K.H. Characterization and structural analysis of the endo-1,4-β-xylanase GH11 from the hemicellulose-degrading Thermoanaerobacterium saccharolyticum useful for lignocellulose saccharification. Sci. Rep. 2023, 13, 17332. [Google Scholar] [CrossRef]
- Talens-Perales, D.; Sánchez-Torres, P.; Marín-Navarro, J.; Polaina, J. In silico screening and experimental analysis of family GH11 xylanases for applications under conditions of alkaline pH and high temperature. Biotechnol. Biofuels 2020, 13, 198. [Google Scholar] [CrossRef]
- Walia, A.; Guleria, S.; Mehta, P.; Chauhan, A.; Parkash, J. Microbial xylanases and their industrial application in pulp and paper biobleaching: A review. 3 Biotech 2017, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N. Microbial xylanases and their industrial applications as well as future perspectives: A review. Glob. J. Biol. Agric. Health Sci. 2017, 6, 5–12. [Google Scholar] [CrossRef]
- Viikari, L.; Kantelinen, A.; Sundquist, J.; Linko, M. Xylanases in bleaching: From an idea to the industry. FEMS Microbiol. Rev. 1994, 13, 335–350. [Google Scholar] [CrossRef]
- Chen, C.-C.; Ko, T.-P.; Huang, J.-W.; Guo, R.-T. Heat- and Alkaline-Stable Xylanases: Application, Protein Structure and Engineering. ChemBioEng Rev. 2015, 2, 95–106. [Google Scholar] [CrossRef]
- Vahjen, W.; Osswald, T.; Schäfer, K.; Simon, O. Comparison of a xylanase and a complex of non starch polysaccharide-degrading enzymes with regard to performance and bacterial metabolism in weaned piglets. Arch. Anim. Nutr. 2007, 61, 90–102. [Google Scholar] [CrossRef]
- Lynd, L.R.; Laser, M.S.; Bransby, D.; Dale, B.E.; Davison, B.; Hamilton, R.; Himmel, M.; Keller, M.; McMillan, J.D.; Sheehan, J.; et al. How biotech can transform biofuels. Nat. Biotechnol. 2008, 26, 169–172. [Google Scholar] [CrossRef]
- Sun, L.; Lee, J.W.; Yook, S.; Lane, S.; Sun, Z.; Kim, S.R.; Jin, Y.-S. Complete and efficient conversion of plant cell wall hemicellulose into high-value bioproducts by engineered yeast. Nat. Commun. 2021, 12, 4975. [Google Scholar] [CrossRef]
- Pokhrel, S.; Joo, J.C.; Yoo, Y.J. Shifting the optimum pH of Bacillus circulans xylanase towards acidic side by introducing arginine. Biotechnol. Bioprocess Eng. 2013, 18, 35–42. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kumar, B.; Verma, P. A detailed overview of xylanases: An emerging biomolecule for current and future prospective. Bioresour. Bioprocess. 2019, 6, 40. [Google Scholar] [CrossRef]
- Hasunuma, T.; Kondo, A. Development of yeast cell factories for consolidated bioprocessing of lignocellulose to bioethanol through cell surface engineering. Biotechnol. Adv. 2012, 30, 1207–1218. [Google Scholar] [CrossRef]
- Bornscheuer, U.T.; Huisman, G.W.; Kazlauskas, R.J.; Lutz, S.; Moore, J.C.; Robins, K. Engineering the third wave of biocatalysis. Nature 2012, 485, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Kan, S.B.J.; Lewis, R.D.; Chen, K.; Arnold, F.H. Directed evolution of cytochrome c for carbon–silicon bond formation: Bringing silicon to life. Science 2016, 354, 1048–1051. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Dauparas, J.; Anishchenko, I.; Bennett, N.; Bai, H.; Ragotte, R.J.; Milles, L.F.; Wicky, B.I.M.; Courbet, A.; de Haas, R.J.; Bethel, N.; et al. Robust deep learning–based protein sequence design using ProteinMPNN. Science 2022, 378, 49–56. [Google Scholar] [CrossRef] [PubMed]
- You, C.; Huang, Q.; Xue, H.; Xu, Y.; Lu, H. Potential hydrophobic interaction between two cysteines in interior hydrophobic region improves thermostability of a family 11 xylanase from Neocallimastix Patriciarum. Biotechnol. Bioeng. 2010, 105, 861–870. [Google Scholar] [CrossRef]
- Zhang, Z.-G.; Yi, Z.-L.; Pei, X.-Q.; Wu, Z.-L. Improving the thermostability of Geobacillus stearothermophilus xylanase XT6 by directed evolution and site-directed mutagenesis. Bioresour. Technol. 2010, 101, 9272–9278. [Google Scholar] [CrossRef]
- Song, L.; Siguier, B.; Dumon, C.; Bozonnet, S.; O’Donohue, M.J. Engineering better biomass-degrading ability into a GH11 xylanase using a directed evolution strategy. Biotechnol. Biofuels 2012, 5, 3. [Google Scholar] [CrossRef]
- Xiang, L.; Wang, M.; Wu, L.; Lu, Z.; Tang, J.; Zhou, J.; Huang, W.; Zhang, G. Structural insights into xylanase mutant 254RL1 for improved activity and lower pH optimum. Enzyme Microb. Technol. 2021, 147, 109786. [Google Scholar] [CrossRef]
- Cheng, Y.-S.; Chen, C.-C.; Huang, J.-W.; Ko, T.-P.; Huang, Z.; Guo, R.-T. Improving the catalytic performance of a GH11 xylanase by rational protein engineering. Appl. Microbiol. Biotechnol. 2015, 99, 9503–9510. [Google Scholar] [CrossRef]
- Kumar, V.; Dangi, A.K.; Shukla, P. Engineering thermostable microbial xylanases toward its industrial applications. Mol. Biotechnol. 2018, 60, 226–235. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, X.; Xie, J.; Li, F. Improvement of the Optimum pH of Aspergillus niger Xylanase towards an Alkaline pH by Site-Directed Mutagenesis. J. Microbiol. Biotechnol. 2015, 25, 11–17. [Google Scholar] [CrossRef]
- Qiu, J.; Han, H.; Sun, B.; Chen, L.; Yu, C.; Peng, R.; Yao, Q. Residue mutations of xylanase in Aspergillus kawachii alter its optimum pH. Microbiol. Res. 2016, 182, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Park, J.Y.; Kim, S.H.; Yoo, Y.J. Shifting pH optimum of Bacillus circulans xylanase based on molecular modeling. J. Biotechnol. 2008, 133, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Joshi, M.D.; Sidhu, G.; Pot, I.; Brayer, G.D.; Withers, S.G.; McIntosh, L.P. Hydrogen bonding and catalysis: A novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. J. Mol. Biol. 2000, 299, 255–279. [Google Scholar] [CrossRef] [PubMed]
- Permyakov, E.A.; Bai, W.; Zhou, C.; Zhao, Y.; Wang, Q.; Ma, Y. Structural insight into and mutational analysis of family 11 xylanases: Implications for mechanisms of higher pH catalytic adaptation. PLoS ONE 2015, 10, e0132834. [Google Scholar] [CrossRef]
- Ma, F.; Xie, Y.; Luo, M.; Wang, S.; Hu, Y.; Liu, Y.; Feng, Y.; Yang, G.-Y. Sequence homolog-based molecular engineering for shifting the enzymatic pH optimum. Synth. Syst. Biotechnol. 2016, 1, 195–206. [Google Scholar] [CrossRef]
- Sürmeli, Y.; Şanlı-Mohamed, G. Engineering of xylanases for the development of biotechnologically important characteristics. Biotechnol. Bioeng. 2023, 120, 1171–1188. [Google Scholar] [CrossRef]
- Ardèvol, A.; Rovira, C. Reaction mechanisms in carbohydrate-active enzymes: Glycoside hydrolases and glycosyltransferases. Insights from ab Initio quantum mechanics/molecular mechanics dynamic simulations. J. Am. Chem. Soc. 2015, 137, 7528–7547. [Google Scholar] [CrossRef]
- McCarter, J.D.; Stephen Withers, G. Mechanisms of enzymatic glycoside hydrolysis. Curr. Opin. Struc. Biol. 1994, 4, 885–892. [Google Scholar] [CrossRef]
- Sinnott, M.L. Catalytic mechanism of enzymic glycosyl transfer. Chem. Rev. 2002, 90, 1171–1202. [Google Scholar] [CrossRef]
- Nam, K.H.; Lee, W.H.; Rhee, K.H.; Hwang, K.Y. Structural characterization of the bifunctional glucanase-xylanase CelM2 reveals the metal effect and substrate-binding moiety. Biochem. Biophys. Res. Commun. 2010, 391, 1726–1730. [Google Scholar] [CrossRef] [PubMed]
- Ishida, T.; Parks, J.M.; Smith, J.C. Insight into the catalytic mechanism of GH11 xylanase: Computational analysis of substrate distortion based on a neutron structure. J. Am. Chem. Soc. 2020, 142, 17966–17980. [Google Scholar] [CrossRef] [PubMed]
- Hutchison, C.A.; Phillips, S.; Edgell, M.H.; Gillam, S.; Jahnke, P.; Smith, M. Mutagenesis at a specific position in a DNA sequence. J. Biol. Chem. 1978, 253, 6551–6560. [Google Scholar] [CrossRef] [PubMed]
- Ruller, R.; Deliberto, L.; Ferreira, T.L.; Ward, R.J. Thermostable variants of the recombinant xylanase a from Bacillus subtilis produced by directed evolution show reduced heat capacity changes. Proteins 2007, 70, 1280–1293. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Zhang, Z.; Yang, C.; Li, P.; Xiao, J.; Wang, R.; Du, P.; Li, N.; Wang, J. Engineering mesophilic GH11 xylanase from Cellulomonas flavigena by rational design of N-terminus substitution. Front. Bioeng. Biotechnol. 2022, 10, 1044291. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhang, Q.; Zhang, L.; Liu, S.; Chen, G.; Zhang, H.; Wang, L. Insights into the role of exposed surface charged residues in the alkali-tolerance of GH11 xylanase. Front. Microbiol. 2020, 11, 872. [Google Scholar] [CrossRef]
- Xu, X.; Liu, M.-Q.; Huo, W.-K.; Dai, X.-J. Obtaining a mutant of Bacillus amyloliquefaciens xylanase A with improved catalytic activity by directed evolution. Enzyme Microb. Technol. 2016, 86, 59–66. [Google Scholar] [CrossRef]
- Liu, L.; Wang, B.; Chen, H.; Wang, S.; Wang, M.; Zhang, S.; Song, A.; Shen, J.; Wu, K.; Jia, X. Rational pH-engineering of the thermostable xylanase based on computational model. Process Biochem. 2009, 44, 912–915. [Google Scholar] [CrossRef]
- Ruller, R.; Alponti, J.; Deliberto, L.A.; Zanphorlin, L.M.; Machado, C.B.; Ward, R.J. Concommitant adaptation of a GH11 xylanase by directed evolution to create an alkali-tolerant/thermophilic enzyme. Protein Eng. Des. Sel. 2014, 27, 255–262. [Google Scholar] [CrossRef]
- Xu, X.; Liu, M.; Dai, X. Expression of recombinant Bacillus amyloliquefaciens xylanase A in Escherichia coli and potential application in xylan hydrolysis. BioResources 2015, 10, 4694–4710. [Google Scholar] [CrossRef]
- Miyazaki, K.; Takenouchi, M.; Kondo, H.; Noro, N.; Suzuki, M.; Tsuda, S. Thermal stabilization of Bacillus subtilis family-11 xylanase by directed evolution. J. Biol. Chem. 2006, 281, 10236–10242. [Google Scholar] [CrossRef] [PubMed]
- Fenel, F.; Zitting, A.-J.; Kantelinen, A. Increased alkali stability in Trichoderma reesei endo-1,4-β-xylanase II by site directed mutagenesis. J. Biotechnol. 2006, 121, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.K.; Oh, H.J.; Kim, H.J.; Cheon, J.; Kim, P. Modification of optimal pH in L-arabinose isomerase from Geobacillus stearothermophilus for D-galactose isomerization. J. Mol. Catal. B Enzym. 2006, 43, 108–112. [Google Scholar] [CrossRef]
- Schlacher, A.; Holzmann, K.; Hayn, M.; Steiner, W.; Schwab, H. Cloning and characterization of the gene for the thermostable xylanase XynA from Thermomyces lanuginosus. J. Biotechnol. 1996, 49, 211–218. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, Z.; Huang, H.; Zhang, H.; Yao, B.; Xiong, H.; Turunen, O. Improved thermal performance of Thermomyces lanuginosus GH11 xylanase by engineering of an N-terminal disulfide bridge. Bioresour. Technol. 2012, 112, 275–279. [Google Scholar] [CrossRef]
- Bhat, S.K.; Purushothaman, K.; Kini, K.R.; Gopala Rao Appu Rao, A.R. Design of mutants of GH11 xylanase from Bacillus pumilus for enhanced stability by amino acid substitutions in the N-terminal region: An in silico analysis. J. Biomol. Struct. Dyn. 2021, 40, 7666–7679. [Google Scholar] [CrossRef]
- Drula, E.; Garron, M.-L.; Dogan, S.; Lombard, V.; Henrissat, B.; Terrapon, N. The carbohydrate-active enzyme database: Functions and literature. Nucleic Acids Res. 2022, 50, D571–D577. [Google Scholar] [CrossRef]
- Nakamura, T.; Mine, S.; Hagihara, Y.; Ishikawa, K.; Ikegami, T.; Uegaki, K. Tertiary structure and carbohydrate recognition by the chitin-binding domain of a hyperthermophilic chitinase from Pyrococcus furiosus. J. Mol. Biol. 2008, 381, 670–680. [Google Scholar] [CrossRef]
- Notenboom, V.; Boraston, A.B.; Kilburn, D.G.; Rose, D.R. Crystal structures of the family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A in native and ligand-bound forms. Biochemistry 2001, 40, 6248–6256. [Google Scholar] [CrossRef]
Accession No. | Source Organism | GENE NAME | PDB Code (Complexed Ligand, Mutation) |
---|---|---|---|
P36217 | Trichoderma reesei (Hypocrea jecorina) or Trichoderma reesei RUT C-30 | Endo-1,4-β-xylanase 2 (xyn2) | 1ENX, 1XYN, 1XYO, 1XYP, 1RED (4,5-epoxypentyl beta-D-xyloside), 1REE (3,4-epoxybutyl beta-D-xyloside), 1REF (2,3-epoxypropyl beta-D-xyloside), 2D97, 2D98, 2DFB, 2DFC, 3LGR (2,6-pyridinedicarboxylic acid), 4HK8 (xylohexaose), 4HK9 (xylotriose), 4HKL, 4HKO, 4HKW, 4S2D (MES), 4S2F, 4S2G, 4S2H, 4XQ4, 4XQD, 4XQW, 4XPV, 5K7P, 5ZF3 (xylotriose), 5ZH0, 5ZH9 (Y88F), 5ZII (xylotriose, Y88F), 5ZIW (Y77F), 5ZKZ (xylotriose, Y77F), 5ZO0, 6JUG (xylotriose), 6JWB (xylotriose), 6JXL (xylotriose), 6JZP (xylotriose), 6K9O, 6K9R (xylotriose), 6KW9 (xylotriose), 6KWD (xylotriose), 6KWF (xylotriose), 6KWG (xylotriose), 6K9W (xylotriose), 6KWC, 6K9X (xylotriose), 6KVV (xylotriose), 6KWE, 6KWH (xylotriose) |
P09850 | Niallia circulans (Bacillus circulans) | Endo-1,4-β-xylanase (xlnA) | 2BVV, 1BVV, 1C5H, 1C5I, 1HV0, 1HV1, 3VZJ, 3VZK, 3VZL, 3VZM (2-deoxy-2-fluoro-xylobiose), 3VZN (2-deoxy-2-fluoro-xylobiose), 3VZO (2-deoxy-2-fluoro-xylobiose) |
P18429 | Bacillus subtilis (strain 168) | Endo-1,4-β-xylanase A (xynA) | 1XXN, 2DCY, 2DCZ, 2B42 (Triticum xylanase inhibitor-IA), 2B45, 2B46, 2QZ3 (xylotetraose), 2Z79, 3HD8 (Triticum aestivum xylanase inhibitor-IIA), 3EXU, |
A0A7G1MBT0 | Streptomyces olivaceoviridis (Streptomyces corchorusii) | Endo-1,4-β-xylanase | 7DFM, 7DFN (α -L-arabinofuranosyl xylotetraose), 7DFO (4-O-methyl-α-D-glucuronopyranosyl xylotetraose) |
P55329 | Aspergillus niger | Endo-1,4-β-xylanase A (xynA) | 1T6G, 2QZ2 (xylopentaose), 6QE8 (xylobiose epoxide) |
Enzyme (Wild-Type) | Source | pH Optimum/Stability | Condition | Mutation Approach | Reference |
---|---|---|---|---|---|
XynA | Bacillus subtilis | pH 6 → 6.5 | 80 °C | DE (epPCR and DNA shuffling) | [44] |
CFXyl3 | Cellulomonas flavigena | pH 7 → 6 | 55 °C | RD | [45] |
Xyn5 | Dictyoglomus thermophilum | pH 7 → 6 | 65 °C, alkali-pretreated rice straw | in silico analysis | [10] |
TlXynA | Thermomyces lanuginosus | acid tolerance alkali tolerance | 65 °C, | RD | [46] |
BaxA | Bacillus amyloliquefaciens | pH 6 (broad pH spectrum) → 7 (narrow pH spectrum) | 50 °C | DE (EPTD-PCR) | [47] |
BCX | Bacillus circulans | pH 6.5 → 5–6 | 50 °C | RD | [18] |
XynB | Thermotoga maritima | pH 5.1 → 5.5, overall pH shift upwards by 0.5 | 90 °C | RD | [48] |
CbX-CD | Caldicellulosiruptor bescii | pH 6.5 → 5.0 | 70 °C | RD Biomathematics and biostatistics | [36] |
XynB | Aspergillus niger | pH 5.0 → 5.5 | 50 °C | Biomathematics RD | [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, I.J.; Kim, S.R.; Bornscheuer, U.T.; Nam, K.H. Engineering of GH11 Xylanases for Optimal pH Shifting for Industrial Applications. Catalysts 2023, 13, 1405. https://doi.org/10.3390/catal13111405
Kim IJ, Kim SR, Bornscheuer UT, Nam KH. Engineering of GH11 Xylanases for Optimal pH Shifting for Industrial Applications. Catalysts. 2023; 13(11):1405. https://doi.org/10.3390/catal13111405
Chicago/Turabian StyleKim, In Jung, Soo Rin Kim, Uwe T. Bornscheuer, and Ki Hyun Nam. 2023. "Engineering of GH11 Xylanases for Optimal pH Shifting for Industrial Applications" Catalysts 13, no. 11: 1405. https://doi.org/10.3390/catal13111405
APA StyleKim, I. J., Kim, S. R., Bornscheuer, U. T., & Nam, K. H. (2023). Engineering of GH11 Xylanases for Optimal pH Shifting for Industrial Applications. Catalysts, 13(11), 1405. https://doi.org/10.3390/catal13111405