GeoQoE-Vanet: QoE-Aware Geographic Routing Protocol for Video Streaming over Vehicular Ad-hoc Networks
<p>Video streaming applications over vehicular network [<a href="#B7-computers-09-00045" class="html-bibr">7</a>].</p> "> Figure 2
<p>Next hop selection strategy in GeoQoE-Vanet protocol.</p> "> Figure 3
<p>Beacon packet format in GeoQoE-Vanet protocol.</p> "> Figure 4
<p>Next forwarding vehicles selection scenario.</p> "> Figure 5
<p>Last forwarding vehicle selection scenario.</p> "> Figure 6
<p>Simulated roadmap area from Open Street Maps (OSM).</p> "> Figure 7
<p>Simulated zone imported in SUMO.</p> "> Figure 8
<p>Mean PSNR results of all scenarios.</p> "> Figure 9
<p>Mean structural similarity (SSIM) results of all scenarios.</p> "> Figure 10
<p>PSNR of received video frames in one 40 vehicles scenario.</p> "> Figure 11
<p>SSIM of received video frames in one 40 vehicles scenario.</p> "> Figure 12
<p>Frame loss percentage of all scenarios.</p> "> Figure 13
<p>Average end-to-end delay of all scenarios.</p> ">
Abstract
:1. Introduction
2. Related Work
3. QoE-Aware Geographic Routing Protocol for Video Streaming over VANETs
3.1. Problem Formulation
3.2. Mobility Metrics
3.2.1. Position Prediction
3.2.2. Distance Calculation
3.2.3. Link Expiration Time
3.3. QoS Metrics
3.3.1. Delay
3.3.2. Jitter
3.3.3. Packet Loss Rate
3.4. Next Hop Selection in GeoQoE-Vanet
Algorithm 1 Actions performed when sending a beacon message |
|
|
|
|
|
|
|
Algorithm 2 Actions performed when receiving a beacon message |
|
|
|
Algorithm 3 The next-hop vehicle selection process in GeoQoE-Vanet protocol |
|
4. Performance Evaluation
- Peak signal to noise ratio: (PSNR) [41], is the most popular and widely accepted quality metric. It compares frame by frame the quality of the video received with the original one.
- Structural similarity: (SSIM) [42], is frame-to-frame video quality metric. It is based on structural information, luminance and contrast. The values of SSIM are comprised between 0 and 1, where a higher SSIM value means better video quality.
4.1. QoE Parameters
4.2. QoS Parameters
4.2.1. Frame Loss
4.2.2. Average End-to-End Delay
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siddik, M.A.; Moni, S.S.; Alam, M.S.; Johnson, W.A. SAFE-MAC: Speed Aware Fairness Enabled MAC Protocol for Vehicular Ad-hoc Networks. Sensors 2019, 19, 2405. [Google Scholar] [CrossRef] [Green Version]
- Khan, U.A.; Lee, S.S. Multi-Layer Problems and Solutions in VANETs: A Review. Electronics 2019, 8, 204. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Jaekel, A. Congestion Control in V2V Safety Communication: Problem, Analysis, Approaches. Electronics 2019, 8, 540. [Google Scholar] [CrossRef] [Green Version]
- Tripp-Barba, C.; Zaldívar-Colado, A.; Urquiza-Aguiar, L.; Aguilar-Calderón, J.A. Survey on Routing Protocols for Vehicular Ad Hoc Networks Based on Multimetrics. Electronics 2019, 8, 1177. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.; Chatterjee, M.; Pasiliao, E. Video quality assessment for inter-vehicular streaming with IEEE 802.11 p, LTE, and LTE Direct networks over fading channels. Comput. Commun. 2018, 118, 69–80. [Google Scholar] [CrossRef]
- Phakathi, T.; Lugayizi, F.; Isong, B.; Gasela, N. Quality of Service of Video Streaming in Vehicular Adhoc Networks: Performance Analysis. In Proceedings of the 2016 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 15–17 December 2016; pp. 505–509. [Google Scholar]
- Benmir, A.; Korichi, A.; Bourouis, A.; Alreshoodi, M. Survey on QoE/QoS Correlation Models for Video Streaming over Vehicular Ad-hoc Networks. J. Comput. Inf. Technol. 2018, 26, 267–287. [Google Scholar]
- Brunnström, K.; Beker, S.A.; De Moor, K.; Dooms, A.; Egger, S.; Garcia, M.N.; Hossfeld, T.; Jumisko-Pyykko, S.; Keimel, C.; Larabi, M.C.; et al. Qualinet White Paper on Definitions of Quality of Experience; Clark County School District: Las Vegas, NV, USA, 2013. [Google Scholar]
- Yang, M.; Wang, S.; Calheiros, R.N.; Yang, F. Survey on QoE assessment approach for network service. IEEE Access 2018, 6, 48374–48390. [Google Scholar] [CrossRef]
- Aliyu, A.; Abdullah, A.H.; Kaiwartya, O.; Cao, Y.; Lloret, J.; Aslam, N.; Joda, U.M. Towards video streaming in IoT Environments: Vehicular communication perspective. Comput. Commun. 2018, 118, 93–119. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Prakash, A.; Tripathi, R. Location based routing protocols in VANET: Issues and existing solutions. Veh. Commun. 2020, 2020, 100231. [Google Scholar] [CrossRef]
- Boussoufa-Lahlah, S.; Semchedine, F.; Bouallouche-Medjkoune, L. Geographic routing protocols for Vehicular Ad hoc NETworks (VANETs): A survey. Veh. Commun. 2018, 11, 20–31. [Google Scholar] [CrossRef]
- Karp, B.; Kung, H.T. GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, Boston, MA, USA, 6–11 August 2000; pp. 243–254. [Google Scholar]
- Benmir, A.; Korichi, A.; Bourouis, A.; Alreshoodi, M.; Al-Jobouri, L. An Enhanced GPSR Protocol for Vehicular Ad hoc Networks. In Proceedings of the 2019 11th Computer Science and Electronic Engineering (CEEC), Essex, UK, 18–20 September 2019; pp. 85–89. [Google Scholar]
- Hanshi, S.M.; Wan, T.C.; Kadhum, M.M.; Bin-Salem, A.A. Review of geographic forwarding strategies for inter-vehicular communications from mobility and environment perspectives. Veh. Commun. 2018, 14, 64–79. [Google Scholar] [CrossRef]
- Granelli, F.; Boato, G.; Kliazovich, D.; Vernazza, G. Enhanced GSPR routing in multi-hop vehicular communications through movement awareness. IEEE Commun. Lett. 2007, 11, 781–783. [Google Scholar] [CrossRef] [Green Version]
- Kumari, N.D.; Shylaja, B. EGRP: Enhanced geographical routing protocol for vehicular adhoc networks. In Computer Communication, Networking and Internet Security; Springer: Berlin, Germany, 2017; pp. 169–178. [Google Scholar]
- Cha, S.H.; Lee, K.W.; Cho, H.S. Grid-based predictive geographical routing for inter-vehicle communication in urban areas. Int. J. Distrib. Sens. Netw. 2012, 8, 819497. [Google Scholar] [CrossRef] [Green Version]
- Houssaini, Z.S.; Zaimi, I.; Oumsis, M.; Ouatik, S.E.A. GPSR+ Predict: An enhancement for GPSR to make smart routing decision by anticipating movement of vehicles in VANETs. Adv. Sci. Technol. Eng. Syst. J. 2017, 2, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Fan, Q.; Chen, X.; Xu, W. Prediction based greedy perimeter stateless routing protocol for vehicular self-organizing network. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018; Volume 322, p. 052019. [Google Scholar]
- Rao, S.A.; Pai, M.; Boussedjra, M.; Mouzna, J. GPSR-L: Greedy perimeter stateless routing with lifetime for VANETS. In Proceedings of the 2008 8th International Conference on ITS Telecommunications, Phuket, Thailand, 22–24 October 2008; pp. 299–304. [Google Scholar]
- Shelly, S.; Babu, A. Link reliability based greedy perimeter stateless routing for vehicular ad hoc networks. Int. J. Veh. Technol. 2015, 2015, 921414. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Yu, M.; Zeng, X. Link available time prediction based GPSR for vehicular ad hoc networks. In Proceedings of the 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC), Calabria, Italy, 16–18 May 2017; pp. 293–298. [Google Scholar]
- Liu, K.; Niu, K. A hybrid relay node selection strategy for vanet routing. In Proceedings of the 2017 IEEE/CIC International Conference on Communications in China (ICCC), Qingdao, China, 22–24 October 2017; pp. 1–6. [Google Scholar]
- Zhang, X.l.; Qian, Z.; Zhang, T. Improved GPSR-SD Routing Protocol for VANET. J. Highw. Transp. Res. Dev. 2017, 11, 98–103. [Google Scholar] [CrossRef]
- Hu, T.; Liwang, M.; Huang, L.; Tang, Y. An enhanced GPSR routing protocol based on the buffer length of nodes for the congestion problem in VANETs. In Proceedings of the 2015 10th International Conference on Computer Science & Education (ICCSE), Cambridge, UK, 22–24 June 2015; pp. 416–419. [Google Scholar]
- Zhou, P.; Xiao, X.; Zhang, W.; Ning, W. An improved GPSR routing algorithm based on vehicle trajectory mining. In Proceedings of the International Conference on Geo-Spatial Knowledge and Intelligence, Chiang Mai, Thailand, 8–10 December 2017; Springer: Berlin, Germany, 2017; pp. 343–349. [Google Scholar]
- Bouras, C.; Kapoulas, V.; Tsanai, E. A GPSR enhancement mechanism for routing in VANETs. In Proceedings of the International Conference on Wired/Wireless Internet Communication, Malaga, Spain, 25–27 May 2015; Springer: Berlin, Germany, 2015; pp. 94–107. [Google Scholar]
- Cui, Z.; Li, D.; Zhang, G.; Guo, C.; Sheng, Y. The next-hop node selection based GPSR in vehicular Ad Hoc networks. Comput. Commun. 2016, 4, 44–56. [Google Scholar] [CrossRef] [Green Version]
- Barba, C.T.; Aguiar, L.U.; Igartua, M.A. Design and evaluation of GBSR-B, an improvement of GPSR for VANETs. IEEE Lat. Am. Trans. 2013, 11, 1083–1089. [Google Scholar] [CrossRef]
- Lochert, C.; Hartenstein, H.; Tian, J.; Fussler, H.; Hermann, D.; Mauve, M. A routing strategy for vehicular ad hoc networks in city environments. In Proceedings of the IEEE IV2003 Intelligent Vehicles Symposium. Proceedings (Cat. No. 03TH8683), Columbus, OH, USA, 9–11 June 2003; pp. 156–161. [Google Scholar]
- Katsaros, K.; Dianati, M.; Tafazolli, R.; Kernchen, R. CLWPR—A novel cross-layer optimized position based routing protocol for VANETs. In Proceedings of the 2011 IEEE vehicular networking conference (VNC), Amsterdam, The Netherlands, 14–16 November 2011; pp. 139–146. [Google Scholar]
- Cai, X.; He, Y.; Zhao, C.; Zhu, L.; Li, C. LSGO: Link state aware geographic opportunistic routing protocol for VANETs. EURASIP J. Wirel. Commun. Netw. 2014, 2014, 96. [Google Scholar] [CrossRef]
- Ko, Y.B.; Vaidya, N.H. Location-Aided Routing (LAR) in mobile ad hoc networks. Wirel. Netw. 2000, 6, 307–321. [Google Scholar] [CrossRef]
- Skiles, J.; Mahgoub, I. A geographical hybrid solution for inter-vehicular communication in VANET. In Proceedings of the 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), Paphos, Cyprus, 5–9 September 2016; pp. 250–255. [Google Scholar]
- Rezende, C.; Ramos, H.S.; Pazzi, R.W.; Boukerche, A.; Frery, A.C.; Loureiro, A.A. Virtus: A resilient location-aware video unicast scheme for vehicular networks. In Proceedings of the 2012 IEEE International Conference on Communications (ICC), Ottawa, ON, Canada, 10–15 June 2012; pp. 698–702. [Google Scholar]
- Mezher, A.M.; Igartua, M.A. Multimedia Multimetric Map-aware Routing protocol to send video-reporting messages over VANETs in smart cities. IEEE Trans. Veh. Technol. 2017, 66, 10611–10625. [Google Scholar] [CrossRef]
- De Felice, M.; Cerqueira, E.; Melo, A.; Gerla, M.; Cuomo, F.; Baiocchi, A. A distributed beaconless routing protocol for real-time video dissemination in multimedia VANETs. Comput. Commun. 2015, 58, 40–52. [Google Scholar] [CrossRef]
- Quadros, C.; Cerqueira, E.; Santos, A.; Lim, J.; Gerla, M. Beacon-less video streaming management for VANETs based on QoE and link-quality. In Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), Ottawa, ON, Canada, 11–15 May 2015; pp. 191–198. [Google Scholar]
- Quadros, C.; Santos, A.; Gerla, M.; Cerqueira, E. A qoe-aware mechanism to improve the dissemination of live videos over vanets. In Proceedings of the 2015 XXXIII Brazilian Symposium on Computer Networks and Distributed Systems, Vitória, Brazil, 18–22 May 2015; pp. 31–40. [Google Scholar]
- Zhao, T.; Liu, Q.; Chen, C.W. QoE in video transmission: A user experience-driven strategy. Commun. Surv. Tutor. 2016, 19, 285–302. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, L.; Bovik, A.C. Video quality assessment based on structural distortion measurement. Signal Process. Image Commun. 2004, 19, 121–132. [Google Scholar] [CrossRef] [Green Version]
- ITU-T. Recommendation P.10/G.100: Vocabulary for Performance, Quality of Service and Quality of Experience. 2017. Available online: https://www.itu.int/rec/T-REC-P.10-201711-I/en (accessed on 27 October 2019).
- Barghi, S.; Benslimane, A.; Assi, C. A lifetime-based routing protocol for connecting vanets to the internet. In Proceedings of the 2009 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks & Workshops, Kos, Greece, 15–19 June 2009; pp. 1–9. [Google Scholar]
- Chen, Y.; Wu, K.; Zhang, Q. From QoS to QoE: A tutorial on video quality assessment. IEEE Commun. Surv. Tutor. 2014, 17, 1126–1165. [Google Scholar] [CrossRef]
- Zaimi, I.; Boushaba, A.; Houssaini, Z.S.; Oumsis, M. A fuzzy geographical routing approach to support real-time multimedia transmission for vehicular ad hoc networks. Wirel. Netw. 2019, 25, 1289–1311. [Google Scholar] [CrossRef]
- Boban, M.; Misek, G.; Tonguz, O.K. What is the best achievable QoS for unicast routing in VANETs? In Proceedings of the 2008 IEEE Globecom Workshops, New Orleans, LA, USA, 30 November–4 December 2008; pp. 1–10. [Google Scholar]
- Garrido Abenza, P.P.; Malumbres, M.P.; Piñol, P.; López-Granado, O. Source Coding Options to Improve HEVC Video Streaming in Vehicular Networks. Sensors 2018, 18, 3107. [Google Scholar] [CrossRef] [Green Version]
- Lakas, A.; Fekair, M.E.A.; Korichi, A.; Lagraa, N. A multiconstrained QoS-compliant routing scheme for highway-based vehicular networks. Wirel. Commun. Mob. Comput. 2019, 2019, 4521859. [Google Scholar] [CrossRef] [Green Version]
- Al-Ani, A.D.; Seitz, J. QoS-aware Routing in Multi-rate Ad hoc Networks Based on Ant Colony Optimization. Netw. Protoc. Algorithms 2015, 7, 1–25. [Google Scholar] [CrossRef]
- Alreshoodi, M.; Woods, J. Survey on QoE\QoS correlation models for multimedia services. Int. J. Distrib. Parallel Syst. 2013, 4, 401–418. [Google Scholar]
- Juluri, P.; Tamarapalli, V.; Medhi, D. Measurement of quality of experience of video-on-demand services: A survey. IEEE Commun. Surv. Tutor. 2015, 18, 401–418. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, R.; Liu, H. Video Service Recovery Mechanism Based on Quality of Experience-Aware in Hybrid Wireless-Optical Broadband-Access Network. Mob. Netw. Appl. 2018, 23, 664–672. [Google Scholar] [CrossRef]
- Haklay, M.; Weber, P. Openstreetmap: User-generated street maps. IEEE Pervas. Comput. 2008, 7, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Lopez, P.A.; Behrisch, M.; Bieker-Walz, L.; Erdmann, J.; Flötteröd, Y.P.; Hilbrich, R.; Lücken, L.; Rummel, J.; Wagner, P.; WieBner, E. Microscopic traffic simulation using sumo. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 2575–2582. [Google Scholar]
- The Network Simulator—ns-2. Available online: https://www.isi.edu/nsnam/ns/ (accessed on 10 April 2019).
- EvalVid—A Video Quality Evaluation Tool-Set. Available online: https://www.tkn.tu-berlin.de/research/evalvid/ (accessed on 13 April 2019).
- Klaue, J.; Rathke, B.; Wolisz, A. Evalvid—A framework for video transmission and quality evaluation. In Proceedings of the International Conference on Modelling Techniques and Tools for Computer Performance Evaluation, Urbana, IL, USA, 2–5 September 2003; Springer: Berlin, Germany, 2003; pp. 255–272. [Google Scholar]
- YUV Video Sequences. Available online: http://trace.eas.asu.edu/yuv/ (accessed on 12 February 2020).
- MSU Video Quality Measurement Tools. Available online: http://www.compression.ru/video/quality_measure/ (accessed on 27 February 2020).
Vehicle-Id | Position (x, y) | Direction | Velocity | MOSrouting | Timestamp |
---|---|---|---|---|---|
25 | 0 | ||||
28 | 0 | ||||
66 | 0 | ||||
88 | 0 | ||||
123 | 0 |
Notation | Descriptions |
---|---|
Undirected graph | |
V | Set of vehicles |
u, v, i, j | Vehicles |
E | Set of communication links E: |
l | Link |
Neighbour relation | |
Set of neighbours of vehicle u | |
Weight vector assigned to a link | |
Individual weight of metric i | |
t, , , , , , | Time |
x, y, , , , , , , , | Position |
s, , | Velocity |
, , | Direction |
D, | Distance |
, | Link expiration time |
r | The transmission range |
Mean of all vehicle links delays | |
Number of neighbours of the vehicle u | |
Jitter of a vehicle u | |
Jitter between the vehicles u and v | |
Packet loss rate of the vehicle u | |
Number of packets received correctly | |
Number of packets received but dropped | |
Number of packets sent correctly | |
Number of packets sent but dropped | |
QoE value of a vehicle u | |
, , , | MOS value |
, , , , , , | Constant values |
Weight value of vehicle i |
Parameter | Value |
---|---|
Environment | Urban |
Simulation area | 1000 × 1000 m |
Simulation time | 200 s |
Number of nodes | 10, 20, 30, 40, and 45 |
Max speed | 22 m/s |
Propagation model | Two-Ray-Ground |
MAC, PHY layer protocol | IEEE 802.11p |
Transmission range | 250 m |
Video frame size | 352 × 288 pixels (CIF format) |
Video | Akiyo (300 frames, 11 s) |
Background traffic | CBRtraffic |
PSNR (dB) | MOS |
---|---|
≥37 | 5 (excellent) |
31–36.9 | 4 (good) |
25–30.9 | 3 (fair) |
20–24.9 | 2 (poor) |
≤19.9 | 1 (bad) |
Protocol | 10 | 20 | 30 | 40 | 45 |
---|---|---|---|---|---|
Vehicles | Vehicles | Vehicles | Vehicles | Vehicles | |
GeoQoE-Vanet | 2 | 2 | 3 | 3 | 4 |
GPSR-2P | 1 | 1 | 2 | 3 | 3 |
GPSR | 1 | 2 | 3 | 3 | 3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benmir, A.; Korichi, A.; Bourouis, A.; Alreshoodi, M.; Al-Jobouri, L. GeoQoE-Vanet: QoE-Aware Geographic Routing Protocol for Video Streaming over Vehicular Ad-hoc Networks. Computers 2020, 9, 45. https://doi.org/10.3390/computers9020045
Benmir A, Korichi A, Bourouis A, Alreshoodi M, Al-Jobouri L. GeoQoE-Vanet: QoE-Aware Geographic Routing Protocol for Video Streaming over Vehicular Ad-hoc Networks. Computers. 2020; 9(2):45. https://doi.org/10.3390/computers9020045
Chicago/Turabian StyleBenmir, Abdelkader, Ahmed Korichi, Abdelhabib Bourouis, Mohammed Alreshoodi, and Laith Al-Jobouri. 2020. "GeoQoE-Vanet: QoE-Aware Geographic Routing Protocol for Video Streaming over Vehicular Ad-hoc Networks" Computers 9, no. 2: 45. https://doi.org/10.3390/computers9020045
APA StyleBenmir, A., Korichi, A., Bourouis, A., Alreshoodi, M., & Al-Jobouri, L. (2020). GeoQoE-Vanet: QoE-Aware Geographic Routing Protocol for Video Streaming over Vehicular Ad-hoc Networks. Computers, 9(2), 45. https://doi.org/10.3390/computers9020045