Impact of Image Compression on In Vitro Cell Migration Analysis
<p>Example of a scratch assay image from our dataset with the well border present in image (<b>a</b>). The publicly available tools usually work on center-cropped images, as depicted in (<b>b</b>). The output of the <span class="html-italic">WHST</span> tool from [<a href="#B64-computers-12-00098" class="html-bibr">64</a>] is shown in (<b>c</b>).</p> "> Figure 2
<p>Optimized LoG output map and hysteresis thresholding (HT) levels.</p> "> Figure 3
<p>HT output map and the connected component autothresholding.</p> "> Figure 4
<p>Example input image (<b>a</b>), detailed view of the center (<b>b</b>), the corresponding cell-area segmentation (<b>c</b>), defined wound area (<b>d</b>), and detailed (<b>e</b>) and final wound area segmentation (<b>f</b>), using the log gradient segmentation algorithm.</p> "> Figure 5
<p>Example input image (<b>a</b>), detailed view of the center (<b>b</b>), the entropy filter response (<b>c</b>), after binarization (<b>d</b>), detailed view with the segmented wound area (<b>e</b>), and final wound area segmentation (<b>f</b>) using the entropy filter segmentation algorithm.</p> "> Figure 6
<p>Example image from the dataset: first image of the the first sequence with <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>×</mo> </mrow> </semantics></math> magnification (<b>a</b>), detailed view of the center (<b>b</b>), and detailed view of the border (<b>c</b>) where a degradation of the quality of the cell structure is visible.</p> "> Figure 7
<p>Example image from the dataset: first image of the the first sequence with <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>×</mo> </mrow> </semantics></math> magnification (<b>a</b>), detailed view of the center (<b>b</b>), and detailed view of the border (<b>c</b>).</p> "> Figure 8
<p>Final wound-area segmentation in the first (<b>a</b>), fifth (<b>b</b>), and ninth (<b>c</b>) image (slides) of the sample sequence A2 using the log gradient segmentation algorithm.</p> "> Figure 9
<p>Final wound area segmentation in the first (<b>a</b>), fifth (<b>b</b>), and ninth (<b>c</b>) image in the sample sequence A2 using the entropy filter segmentation algorithm.</p> "> Figure 10
<p>Example input image (<b>a</b>), detailed view of the center (<b>b</b>), the entropy filter response (<b>c</b>), and the output of <span class="html-italic">BCAnalyzer</span> software (<b>d</b>). The ROI used to mask the output of <span class="html-italic">BCAnalyzer</span> software is shown in (<b>d</b>); the resulting wound area segmentation is shown in (<b>e</b>,<b>f</b>) as an overlay in the input image.</p> "> Figure 11
<p>Final wound area segmentation in the first (<b>a</b>), fifth (<b>b</b>), and ninth (<b>c</b>) image in the sample sequence A2 using the (adapted) <span class="html-italic">BCAnalyzer</span> tool.</p> "> Figure 12
<p>Segmentation algorithms performance applied on the sequence X.</p> "> Figure 13
<p>Visualization of the automatically generated ground truth in green in comparison with the manually corrected values in red as overlay on a detailed view of the wound area in the first image of sequence X (<b>a</b>). (<b>b</b>) An overlay on the sixth image in sequence X to compare the ground truth (green) with the result of the entropy filter segmentation algorithm (red).</p> "> Figure 14
<p>Compression of algorithms’ performance on the <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>×</mo> </mrow> </semantics></math> (<b>a</b>,<b>b</b>) and <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>×</mo> </mrow> </semantics></math> (<b>c</b>,<b>d</b>) magnification images using 0.5 BPPs, 1.0 BPPs, and 2.0 BPPs bandwidths, corresponding to high (A), medium (B), and low (C) compression rates, respectively.</p> "> Figure 15
<p>Segmentation performance on the C (<b>a</b>,<b>b</b>), B (<b>c</b>,<b>d</b>), and A (<b>e</b>,<b>f</b>) compressed images on sequence A2 using the log gradient segmentation algorithm. In the left column, results are depicted for <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>×</mo> </mrow> </semantics></math> magnification and in the right column for <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>×</mo> </mrow> </semantics></math> magnification images.</p> "> Figure 16
<p>Segmentation performance on the C (<b>a</b>,<b>b</b>), B (<b>c</b>,<b>d</b>), and A (<b>e</b>,<b>f</b>) compressed images on sequence A2 using the entropy filter segmentation algorithm. In the left and right columns, the results are depicted for the <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>×</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>×</mo> </mrow> </semantics></math> magnification images, respectively.</p> "> Figure 16 Cont.
<p>Segmentation performance on the C (<b>a</b>,<b>b</b>), B (<b>c</b>,<b>d</b>), and A (<b>e</b>,<b>f</b>) compressed images on sequence A2 using the entropy filter segmentation algorithm. In the left and right columns, the results are depicted for the <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>×</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>×</mo> </mrow> </semantics></math> magnification images, respectively.</p> "> Figure 17
<p>Segmentation performance on the C (<b>a</b>,<b>b</b>), B (<b>c</b>,<b>d</b>), and A (<b>e</b>,<b>f</b>) compressed images on sequence A3 using the entropy filter segmentation algorithm. In the left and right columns, the results are depicted for the <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>×</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>×</mo> </mrow> </semantics></math> magnification images, respectively.</p> "> Figure 18
<p>Center cropped area of image 6 of the A2 sequence. The highlighted segmented wound area (<b>a</b>) shows the segmentation on the original image, whereas the other three are J2K-compressed images with C (<b>b</b>), B (<b>c</b>), and A (<b>d</b>) compression rates. All images are from the <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>×</mo> </mrow> </semantics></math> magnification sequence.</p> "> Figure 18 Cont.
<p>Center cropped area of image 6 of the A2 sequence. The highlighted segmented wound area (<b>a</b>) shows the segmentation on the original image, whereas the other three are J2K-compressed images with C (<b>b</b>), B (<b>c</b>), and A (<b>d</b>) compression rates. All images are from the <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>×</mo> </mrow> </semantics></math> magnification sequence.</p> "> Figure 19
<p>Visualization of the segmentation result of sequence A3 where the jump in the segmented wound area size appeared in the reference result according to the results in <a href="#computers-12-00098-f017" class="html-fig">Figure 17</a>. (<b>a</b>) The center of image 5 and (<b>b</b>) the center of image 6 of the original images. (<b>c</b>) The J2K-compressed image 6 at high (A) compression rate. All images were from the <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>×</mo> </mrow> </semantics></math> magnification sequence.</p> "> Figure 20
<p>Segmentation performance on the C (<b>a</b>,<b>b</b>), B (<b>c</b>,<b>d</b>), and A (<b>e</b>,<b>f</b>) compressed images on sequence A2 using the (adapted) <span class="html-italic">BCAnalyzer</span> tool. In the left and right columns, the results are depicted for the <math display="inline"><semantics> <mrow> <mn>4</mn> <mo>×</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>×</mo> </mrow> </semantics></math> magnification images, respectively.</p> ">
Abstract
:1. Introduction
1.1. Biometrics
1.2. Medical Image Analysis
1.3. Other Areas
2. Wound Area Segmentation
2.1. Log Gradient Segmentation
2.2. Entropy Filter Segmentation
3. Image Compression
4. Experimental Framework
4.1. Main Dataset
4.2. Data Sequence X
4.3. Metric and Measures
5. Segmentation Experiments and Analysis
6. Compression Experiments and Analysis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fong, W.; Chan, S.; Ho, K. Designing JPEG quantization matrix using rate-distortion approach and human visual system model. In Proceedings of the IEEE International Conference on Communications (ICC’97), Montreal, QC, Canada, 12 June 1997; Volume 3, pp. 1659–1663. [Google Scholar]
- Chen, M.; Zhang, S.; Karim, M. Modification of standard image compression methods for correlation-based pattern recognition. Opt. Eng. 2004, 43, 1723–1730. [Google Scholar]
- Conrath, J.; Erginay, A.; Giorgi, R.; Lecleire-Collet, A.; Vicaut, E.; Klein, J.C.; Gaudric, A.; Massin, P. Evaluation of the effect of JPEG and JPEG2000 image compression on the detection of diabetic retinopathy. Eye 2007, 21, 487–493. [Google Scholar] [CrossRef]
- Elmer, P.; Häfner, M.; Tamaki, T.; Tanaka, S.; Thaler, R.; Uhl, A.; Yoshida, S. Impact of Lossy Image Compression on CAD Support Systems for Colonoscopy. In Proceedings of the Computer-Assisted and Robotic Endoscopy (CARE’15), Munich, Germany, 5 October 2015; Springer Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2016; Volume 9515, pp. 1–11. [Google Scholar]
- Rakshit, S.; Monro, D. An Evaluation of Image Sampling and Compression for Human Iris Recognition. IEEE Trans. Inf. Forensics Secur. 2007, 2, 605–612. [Google Scholar] [CrossRef]
- Matschitsch, S.; Tschinder, M.; Uhl, A. Comparison of Compression Algorithms’ Impact on Iris Recognition Accuracy. In Proceedings of the Proceedings of the 2nd International Conference on Biometrics 2007 (ICB’07), Seoul, Republic of Korea, 27–29 August 2007; Lee, S.W., Li, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4642, pp. 232–241. [Google Scholar]
- Daugman, J.; Downing, C. Effect of Severe Image Compression on Iris Recognition Performance. IEEE Trans. Inf. Forensics Secur. 2008, 3, 52–61. [Google Scholar] [CrossRef]
- Ives, R.W.; Broussard, R.P.; Kennell, L.R.; Soldan, D.L. Effects of image compression on iris recognition system performance. J. Electron. Imaging 2008, 17, 011015. [Google Scholar] [CrossRef]
- Ives, R.W.; Bishop, D.; Du, Y.; Belcher, C. Iris Recognition: The Consequences of Image Compression. EURASIP J. Adv. Signal Process. 2010, 2010, 680845. [Google Scholar] [CrossRef]
- Grother, P. Quantitative Standardization of Iris Image Formats. In Proceedings of the Biometrics and Electronic Signature Special Interest Group Conference (BIOSIG 2009), Darmstadt, Germany, 17–18 September 2009; pp. 143–154. [Google Scholar]
- Figueroa-Villanueva, M.; Ratha, N.; Bolle, R. A comparative performance analysis of JPEG2000 vs. WSQ for fingerprint compression. In Proceedings of the AVBPA; Kittler, J., Nixon, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2688, pp. 385–392. [Google Scholar]
- Kidd, R. Comparison of wavelet scalar quantization and JPEG for fingerprint image compression. J. Electron. Imaging 1995, 4, 31–39. [Google Scholar] [CrossRef]
- Mascher-Kampfer, A.; Stögner, H.; Uhl, A. Comparison of compression algorithms’ impact on fingerprint and face recognition accuracy. In Proceedings of the Visual Communications and Image Processing 2007 (VCIP’07), San Jose, CA, USA, 28 January–1 February 2007; Chen, C., Schonfeld, D., Luo, J., Eds.; Number 6508 in Proceedings of SPIE. SPIE: San Jose, CA, USA, 2007; p. 650810. [Google Scholar]
- Funk, W.; Arnold, M.; Busch, C.; Munde, A. Evaluation of image compression algorithms for fingerprint and face recognition systems. In Proceedings of the Sixth Annual IEEE Systems, Man and Cybernetics (SMC) Information Assurance Workshop, West Point, NY, USA, 15–17 June 2006; Cole, J., Wolthusen, S., Eds.; IEEE Computer Society: Washington, DC, USA, 2006; pp. 72–78. [Google Scholar]
- Ablinger, V.; Zenz, C.; Hämmerle-Uhl, J.; Uhl, A. Compression Standards in Fingervein Recognition. In Proceedings of the 9th IAPR/IEEE International Conference on Biometrics (ICB’16), Halmstad, Sweden, 13–16 June 2016; pp. 1–7. [Google Scholar]
- Kauba, C.; Uhl, A. Robustness Evaluation of Hand Vein Recognition Systems. In Proceedings of the International Conference of the Biometrics Special Interest Group (BIOSIG’15), Darmstadt, Germany, 9–11 September 2015; pp. 1–8. [Google Scholar] [CrossRef]
- Lipowski, T.; Maser, B.; Hämmerle-Uhl, J.; Uhl, A. Finger-vein Sample Compression in Presence of Pre-Compressed Gallery Data. In Proceedings of the International Conference of the Biometrics Special Interest Group (BIOSIG’18), Darmstadt, Germany, 26–28 September 2018; pp. 1–8. [Google Scholar]
- Schörgnhofer, K.; Dafir, T.S.; Uhl, A. Multi-sample Compression of Finger Vein Images using H.265 Video Coding. In Proceedings of the 12th IAPR/IEEE International Conference on Biometrics (ICB’19), Crete, Greece, 4–7 June 2019; pp. 1–8. [Google Scholar]
- Granai, L.; Tena, J.; Hamouz, M.; Kittler, J. Influence of compression on 3D face recognition. Pattern Recognit. Lett. 2009, 30, 745–750. [Google Scholar] [CrossRef]
- Delac, K.; Grgic, S.; Grgic, M. Image Compression in Face Recognition—A Literature Survey. In Recent Advances in Face Recognition; Delac, K., Grgic, M., Bartlett, M., Eds.; I-Tech: Vienna, Austria, 2008; pp. 236–250. [Google Scholar]
- Jeong, G.M.; Kim, C.; Ahn, H.S.; Ahn, B.J. JPEG Quantization Table Design for Face Images and Its Application to Face Recognition. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2006, E69-A, 2990–2993. [Google Scholar] [CrossRef]
- Mascher-Kampfer, A.; Stögner, H.; Uhl, A. Multiple Re-Watermarking Scenarios. In Proceedings of the 13th International Conference on Systems, Signals, and Image Processing (IWSSIP 2006), Budapest, Hungary, 21–23 September 2006; pp. 53–56. [Google Scholar]
- Delac, K.; Grgic, M.; Grgic, S. Face recognition in JPEG and JPEG2000 compressed domain. Image Vis. Comput. 2009, 27, 1108–1120. [Google Scholar] [CrossRef]
- Quinn, G.; Grother, P.J. Technical Report NIST Interagency Report 7830; Information Technology Laboratory, The National Institute of Standards and Technology: Gaithersburg, MD, USA, 2011. [Google Scholar]
- Kamasack, M.; Sankur, B. Face recognition under lossy compression. In Proceedings of the International Conference on Pattern Recognition and Information Processing (PRIP’99), Minsk, Belarus, 18–20 May 1999; pp. 27–32. [Google Scholar]
- Klare, B.; Burge, M. Assessment of H.264 Video Compression on Automated Face Recognition Performance in Surveillance and Mobile Video Scenarios. In Proceedings of the Biometric Technology for Human Identification VII; Kumar, V., Prabhakar, S., Ross, A., Eds.; Proceedings of SPIE; SPIE: Bellingham, WA, USA, 2010; Volume 7667, p. 76670X. [Google Scholar]
- Korshunov, P.; Ooi, W. Video quality for face detection, recognition, and tracking. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 2011, 7, 14. [Google Scholar] [CrossRef]
- Elmer, P.; Lupp, A.; Sprenger, S.; Thaler, R.; Uhl, A. Exploring Compression Impact on Face Detection Using Haar-like Features. In Proceedings of the 19th Scandinavian Conference on Image Analysis (SCIA’15), Copenhagen, Denmark, 15–17 June 2015; Volume 9127, pp. 53–64. [Google Scholar]
- Jalilian, E.; Hofbauer, H.; Uhl, A. Deep Iris Compression. In Proceedings of the Pattern Recognition—ICPR International Workshops and Challenges, Proceedings, Part V; Springer: Milan, Italy, 2021; Volume 12565, pp. 1–15. [Google Scholar]
- Jalilian, E.; Hofbauer, H.; Uhl, A. Iris Image Compression Using Deep Convolutional Neural Networks. Sensors 2022, 22, 2698. [Google Scholar] [CrossRef]
- Rathgeb, C.; Uhl, A.; Wild, P. Effects of Severe Image Compression on Iris Segmentation Performance (Best Poster Award). In Proceedings of the IAPR/IEEE International Joint Conference on Biometrics (IJCB’14), Clearwater, FL, USA, 29 September–2 October 2014. [Google Scholar]
- Herzog, T.; Uhl, A. JPEG Optimisation for Fingerprint Recognition: Generalisation Potential of an Evolutionary Approach. In Proceedings of the International Conference of the Biometrics Special Interest Group (BIOSIG’15), Darmstadt, Germany, 9–11 September 2015; p. 8, accepted. [Google Scholar]
- Konrad, M.; Stögner, H.; Uhl, A. Custom Design of JPEG quantization tables for compressing iris polar images to improve recognition accuracy. In Proceedings of the 3rd International Conference on Biometrics 2009 (ICB’09), Alghero, Italy, 2–5 June 2009; Tistarelli, M., Nixon, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5558, pp. 1091–1101. [Google Scholar]
- Konrad, M.; Stögner, H.; Uhl, A. Evolutionary Optimization of JPEG Quantization Tables for Compressing Iris Polar Images in Iris Recognition Systems. In Proceedings of the 6th International Symposium on Image and Signal Processing and Analysis, ISPA ’09, Salzburg, Austria, 16–18 September 2009. [Google Scholar]
- Kostmajer, G.; Stögner, H.; Uhl, A. Custom JPEG Quantization for Improved Iris Recognition Accuracy. In Proceedings of the Emerging Challenges for Security, Privacy and Trust—Proceedings of the 24th IFIP International Information Security Conference 2009 (IFIP SEC’09), Pafos, Cyprus, 18–20 May 2009; Gritzalis, D., Lopez, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 297, pp. 76–86. [Google Scholar]
- Hämmerle-Uhl, J.; Karnutsch, M.; Uhl, A. Evolutionary Optimisation of JPEG2000 Part 2 Wavelet Packet Structures for Polar Iris Image Compression. In Proceedings of the 18th Iberoamerican Congress on Pattern Recognition (CIARP’13), Havana, Cuba, 20–23 November 2013; Volume 8258, pp. 391–398. [Google Scholar]
- Mühlbacher, B.; Stütz, T.; Uhl, A. JPEG2000 Part 2 wavelet packet subband structures in fingerprint recognition. In Proceedings of the Visual Communications and Image Processing 2010 (VCIP’10), Huangshan, China, 11–14 July 2010; Frossard, P., Li, H., Wu, F., Girod, B., Li, S., Wei, G., Eds.; Number 7744 in Proceedings of SPIE. SPIE: Bellingham, WA, USA, 2010; p. 77442C. [Google Scholar]
- Horvath, K.; Stögner, H.; Uhl, A. Optimisation of JPEG XR quantisation settings in iris recognition systems. In Proceedings of the 4th International Conference on Advances in Multimedia (MMEDIA 2012), Chamonix/Mont Blanc, France, 29 April–4 May 2012; pp. 88–93. [Google Scholar]
- Belloulata, K.; Baskurt, A.; Benoit-Cattin, H.; Prost, R. Fractal coding of medical images. In Proceedings of the Medical Imaging 1996: Image Display; Kim, Y., Ed.; SPIE Proceedings; SPIE: Newport Beach, CA, USA, 1996; Volume 2707, pp. 598–609. [Google Scholar]
- Panych, L. Theoretical comparison of Fourier and Wavelet Encoding in Magnetic Resonance Imaging. IEEE Trans. Med Imaging 1997, 15, 141–153. [Google Scholar] [CrossRef]
- European Society of Radiology (ESR). Usability of irreversible image compression in radiological imaging. A position paper by the European Society of Radiology (ESR). Insights Imaging 2011, 2, 103–115. [Google Scholar] [CrossRef]
- Schoeffmann, K.; Fabro, M.D.; Böszörmenyi, L.; Smulders, J.; Jakimowicz, J. Investigation of the Impact of Compression on the Perceptional Quality of Laparoscopic Videos. In Proceedings of the 27th International Symposium on Computer-Based Medical Systems (CBMS’14), New York, NY, USA, 27–29 May 2014; pp. 153–158. [Google Scholar]
- Cosman, P.C.; Gray, R.M.; Olshen, R.A. Evaluating quality of compressed medical images: SNR, Subjective Rating, and Diagnostic Accuracy. Proc. IEEE 1994, 82, 919–932. [Google Scholar] [CrossRef]
- Konsti, J.; Lundin, M.; Linder, N.; Haglund, C.; Blomqvist, C.; Nevanlinna, H.; Aaltonen, K.; Nordling, S.; Lundin, J. Effect of image compression and scaling on automated scoring of immunohistochemical stainings and segmentation of tumor epithelium. Diagn. Pathol. 2012, 7, 29. [Google Scholar] [CrossRef]
- Santalla, H.; Meschino, G.; Ballarin, V. Effects on MR images compression in tissue classification quality. J. Phys. Conf. Ser. 2007, 90, 012061. [Google Scholar] [CrossRef]
- Elmer, P.; Häfner, M.; Tamaki, T.; Tanaka, S.; Thaler, R.; Uhl, A.; Yoshida, S. Compression-scenarios for LIRE-based CBIR on colonoscopy data. In Proceedings of the Bildverarbeitung für die Medizin 2016 (BVM’16), Berlin, Germany, 13–15 March 2016; pp. 152–157. [Google Scholar]
- Chao, J.; Al-Nuaimi, A.; Schroth, G.; Steinbach, E. Performance comparison of various feature detector-descriptor combinations for content-based image retrieval with JPEG-encoded query images. In Proceedings of the 2013 IEEE 15th International Workshop on Multimedia Signal Processing (MMSP), Pula, Italy, 30 September–2 October 2013; pp. 029–034. [Google Scholar] [CrossRef]
- Schäfer, G. Does compression affect image retrieval performance? Int. J. Imaging Syst. Technol. 2008, 18, 101–112. [Google Scholar] [CrossRef]
- Sultana, Z.; Nahar, L.; Tasnim, F.; Hossain, M.S.; Andersson, K. Lossy Compression Effect on Color and Texture Based Image Retrieval Performance. In Proceedings of the Intelligent Computing & Optimization; Vasant, P., Weber, G.W., Marmolejo-Saucedo, J.A., Munapo, E., Thomas, J.J., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 1159–1167. [Google Scholar]
- Zabala, A.; Pons, X. Effects of lossy compression on remote sensing image classification of forest areas. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 43–51. [Google Scholar] [CrossRef]
- Garcia-Vichez, F.; Munoz-Mari, M.Z.J.; Blanes, I.; Gonzales-Ruiz, V.; Camps-Valls, G. On the Impact of Lossy Compression on Hyperspectral Image Classification and Unmixing. IEEE Geosci. Remote Sens. Lett. 2011, 8, 253–257. [Google Scholar] [CrossRef]
- Lau, W.L.; Li, Z.L.; Lam, W.K. Effects of JPEG compression on image classification. Int. J. Remote Sens. 2003, 24, 1535–1544. [Google Scholar] [CrossRef]
- Joechl, R.; Uhl, A. Effects of Image Compression on Image Age Approximation. In Proceedings of the 20th International Workshop on Digital-Forensics and Watermarking (IWDW2021), Beijing, China, 20–22 November 2021; pp. 102–116. [Google Scholar] [CrossRef]
- Remy, O.; Strumegger, S.; Hämmerle-Uhl, J.; Uhl, A. Comparative Compression Robustness Evaluation of Digital Image Forensics. In Proceedings of the Computational Science and Its Applications—ICCSA 2022, Malaga, Spain, 4–7 July 2022; Volume 13376, pp. 236–246. [Google Scholar]
- Pomarico, E.; Schmidt, C.; Chays, F.; Nguyen, D.; Planchette, A.; Tissot, A.; Roux, A.; Pagès, S.; Batti, L.; Clausen, C.; et al. Quantifying the effect of image compression on supervised learning applications in optical microscopy. arXiv 2020, arXiv:2009.12570. [Google Scholar] [CrossRef]
- Chen, Y.; Janowczyk, A.; Madabhushi, A. Quantitative Assessment of the Effects of Compression on Deep Learning in Digital Pathology Image Analysis. JCO Clin. Cancer Inform. 2020, 4, 221–233. [Google Scholar] [CrossRef]
- López, C.; Lejeune, M.; Bosch, P.E.R.; Salvadó, M.T.; Pons, L.; Baucells, J.; Cugat, X.; Álvaro, T.; Jaén, J. Effects of image compression on automatic count of immunohistochemically stained nuclei in digital images. J. Am. Med. Inform. Assoc. 2008, 15, 794–798. [Google Scholar] [CrossRef]
- Lejeune, M.; López, C.; Bosch, R.; Korzyńska, A.; Salvadó, M.T.; García-Rojo, M.; Neuman, U.; Witkowski, Ł.; Baucells, J.; Jaén, J. JPEG2000 for automated quantification of immunohistochemically stained cell nuclei: A comparative study with standard JPEG format. Virchows Arch. 2011, 458, 237–245. [Google Scholar] [CrossRef]
- Dong, Y.; Pan, W.D.; Wu, D. Impact of Misclassification Rates on Compression Efficiency of Red Blood Cell Images of Malaria Infection Using Deep Learning. Entropy 2019, 21, 1062. [Google Scholar] [CrossRef]
- Pomarico, E.; Schmidt, C.; Chays, F.; Nguyen, D.; Planchette, A.; Tissot, A.; Roux, A.; Pagès, S.; Batti, L.; Clausen, C.; et al. Statistical distortion of supervised learning predictions in optical microscopy induced by image compression. Sci. Rep. 2022, 12, 3464. [Google Scholar] [CrossRef]
- Liang, C.C.; Park, A.Y.; Guan, J.L. In vitro scratch assay: A convenient and inexpensive method for analysis of cell migration in vitro. Nat. Protoc. 2007, 2, 329–333. [Google Scholar] [CrossRef]
- Jonkman, J.E.N.; Cathcart, J.A.; Xu, F.; Bartolini, M.E.; Amon, J.E.; Stevens, K.M.; Colarusso, P. An introduction to the wound healing assay using live-cell microscopy. Cell Adh. Migr. 2014, 8, 440–451. [Google Scholar] [CrossRef]
- Grada, A.; Otero-Vinas, M.; Prieto-Castrillo, F.; Obagi, Z.; Falanga, V. Research Techniques Made Simple: Analysis of Collective Cell Migration Using the Wound Healing Assay. J. Investig. Dermatol. 2017, 137, e11–e16. [Google Scholar] [CrossRef]
- Suarez-Arnedo, A.; Figueroa, F.T.; Clavijo, C.; Arbeláez, P.; Cruz, J.C.; Muñoz-Camargo, C. An image J plugin for the high throughput image analysis of in vitro scratch wound healing assays. PLoS ONE 2020, 15, e0232565. [Google Scholar] [CrossRef]
- Gebäck, T.; Schulz, M.M.P.; Koumoutsakos, P.; Detmar, M. TScratch: A novel and simple software tool for automated analysis of monolayer wound healing assays. Biotechniques 2009, 46, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Glaß, M.; Möller, B.; Zirkel, A.; Wächter, K.; Hüttelmaier, S.; Posch, S. Scratch Assay Analysis with Topology-Preserving Level Sets and Texture Measures. In Proceedings of the Pattern Recognition and Image Analysis; Vitrià, J., Sanches, J.M., Hernández, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 100–108. [Google Scholar]
- Glaß, M.; Möller, B.; Zirkel, A.; Wächter, K.; Hüttelmaier, S.; Posch, S. Cell migration analysis: Segmenting scratch assay images with level sets and support vector machines. Pattern Recognit. 2012, 45, 3154–3165. [Google Scholar] [CrossRef]
- Topman, G.; Sharabani-Yosef, O.; Gefen, A. A standardized objective method for continuously measuring the kinematics of cultures covering a mechanically damaged site. Med. Eng. Phys. 2012, 34, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Möller, B.; Posch, S. Comparing active contours for the segmentation of biomedical images. In Proceedings of the 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), Barcelona, Spain, 2–5 May 2012; pp. 736–739. [Google Scholar] [CrossRef]
- Cortesi, M.; Pasini, A.; Tesei, A.; Giordano, E. AIM: A Computational Tool for the Automatic Quantification of Scratch Wound Healing Assays. Appl. Sci. 2017, 7, 1237. [Google Scholar] [CrossRef]
- Javer, A.; Rittscher, J.; Sailem, H.Z. DeepScratch: Single-cell based topological metrics of scratch wound assays. Comput. Struct. Biotechnol. J. 2020, 18, 2501–2509. [Google Scholar] [CrossRef] [PubMed]
- Sinitca, A.M.; Kayumov, A.R.; Zelenikhin, P.V.; Porfiriev, A.G.; Kaplun, D.I.; Bogachev, M.I. Segmentation of patchy areas in biomedical images based on local edge density estimation. Biomed. Signal Process. Control 2023, 79, 104189. [Google Scholar] [CrossRef]
- Ding, K.; Xiao, L.; Weng, G. Active contours driven by region-scalable fitting and optimized Laplacian of Gaussian energy for image segmentation. Signal Process. 2017, 134, 224–233. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E.; Eddins, S.L. Digital Image Processing Using Matlab; Prentice Hall: Hoboken, NJ, USA, 2003. [Google Scholar]
- Wang, Z.; P-Simoncelli, E.; C-Bovik, A. Multiscale structural similarity for image quality assessment. In Proceedings of the Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, 9–12 November 2003; Volume 2, pp. 1398–1402. [Google Scholar]
Compression Rate: | High | Medium | Low | |||
---|---|---|---|---|---|---|
Parameter & Output BPPs: | par | bpp | par | bpp | par | bpp |
BPG | 33 | 0.48 | 29 | 0.99 | 25 | 2.03 |
J2K | 16 | 0.49 | 8 | 0.99 | 4 | 1.99 |
JPEG | 23 | 0.50 | 61 | 0.99 | 85 | 2.05 |
WEBP | 26 | 0.52 | 53 | 1.02 | 83 | 2.06 |
JPEG-XL | 61 | 0.49 | 81 | 0.99 | 89 | 2.01 |
AV1 | 34 | 0.47 | 26 | 0.99 | 15 | 2.05 |
BPP Level: | A (0.50) | B (1.00) | C (2.00) |
Magnification | Entropy Filter Seg. | Log Gradient Seg. | BCAnalyzer |
---|---|---|---|
4× | |||
10× |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalilian, E.; Linortner, M.; Uhl, A. Impact of Image Compression on In Vitro Cell Migration Analysis. Computers 2023, 12, 98. https://doi.org/10.3390/computers12050098
Jalilian E, Linortner M, Uhl A. Impact of Image Compression on In Vitro Cell Migration Analysis. Computers. 2023; 12(5):98. https://doi.org/10.3390/computers12050098
Chicago/Turabian StyleJalilian, Ehsaneddin, Michael Linortner, and Andreas Uhl. 2023. "Impact of Image Compression on In Vitro Cell Migration Analysis" Computers 12, no. 5: 98. https://doi.org/10.3390/computers12050098
APA StyleJalilian, E., Linortner, M., & Uhl, A. (2023). Impact of Image Compression on In Vitro Cell Migration Analysis. Computers, 12(5), 98. https://doi.org/10.3390/computers12050098