Ontology-Based Reasoning for Educational Assistance in Noncommunicable Chronic Diseases
<p>Conceptual map on educational assistance in NCDs.</p> "> Figure 2
<p>Hierarchical view of ontology classes.</p> "> Figure 3
<p>Hierarchy of classes, relationships, and attributes.</p> "> Figure 4
<p>Hierarchical view of ontology classes and relationships.</p> "> Figure 5
<p>Logical expression describing the axiom of equivalence for (1) low, (2) moderate, and (3) high risk level for cardiovascular disease.</p> "> Figure 6
<p>Instances created in Protégé.</p> "> Figure 7
<p>Execution of Pellet plugin reasoning tasks.</p> "> Figure 8
<p>Outcome of the NCD risk inference process.</p> "> Figure 9
<p>Result of the content inference process for instances “Person2Profile” and “Person5Profile”.</p> "> Figure 10
<p>SPARQL query for profile, clinical, and sociodemographic data.</p> "> Figure 11
<p>Result of the SPARQL query.</p> "> Figure 12
<p>Result of the SPARQL queries for CQ1 and CQ2.</p> "> Figure 13
<p>Result of the SPARQL queries for CQ3 and CQ4.</p> "> Figure 14
<p>Results of the SPARQL queries for CQ5, CQ6, and CQ7.</p> ">
Abstract
:1. Introduction
2. Background
2.1. Noncommunicable Diseases and Risk Factors
2.2. Ubiquitous Learning in Health
2.3. Related Work
3. Modeling and Implementation
3.1. Determine the Domain, Scope, and Competency Issues
3.2. Consider Reusing Existing Ontologies
3.3. List Important Ontology Terms
3.4. Define the Classes and Hierarchy
3.5. Define Relationships and Class Properties
3.6. Define the Semantic Rules
3.7. Create the Instances
4. Evaluation and Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | American Indians |
CQ | Competency Questions |
BFO | The Basic Formal Ontology |
CDSS | Clinical Decision Support Systems |
COVID-19 | Coronavirus Disease 2019 |
DDO | Diabetes Mellitus Diagnosis Ontology |
DINTO | Drug Interactions Ontology |
DM | Diabetes Mellitus |
DMTO | Diabetes Mellitus Treatment Ontology |
DOID | Human Disease Ontology |
e-Health | Electronic Health |
FO | OntoFood Ontology |
IDF | International Diabetes Federation |
ICTs | Information and communication technologies |
LOINC | Logical Observation Identifiers Names and Codes |
MIMIC-III | Medical Information Mart for Intensive Care-III |
NCDs | Noncommunicable chronic diseases |
NCIt | NCI Thesaurus |
NDF-RT | National Drug File-Reference Terminology |
OBO | Open Biomedical Ontologies |
OCRV | Cancer Research Variables |
OGMS | Ontology for General Medical Science |
OWL | Ontology Web Language |
RO | OBO Relation Ontology |
SNOMED CT | Systematized Nomenclature of Medicine-Clinical Terms |
SWRL | Semantic Web Rule Language |
SYMP | Symptom Ontology |
TEO | Time Event Ontology |
TOVE | Toronto Virtual Enterprise |
u-Health | Ubiquitous Health |
UO | Units of Measurement Ontology |
WHO | World Health Organization |
W3C | World Wide Web Consortium |
References
- WHO. The Top 10 Causes of Death. Available online: http://who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 9 September 2021).
- WHO. The Global Health Observatory. Available online: http://who.int/data/gho/data/themes/noncommunicable-diseases/GHO/noncommunicable-diseases (accessed on 9 September 2021).
- García-Álvarez, L. Will changes in alcohol and tobacco use be seen during the COVID-19 lockdown? Adicciones 2020, 32, 85–89. Available online: https://digibuo.uniovi.es/dspace/bitstream/handle/10651/56548/1546-4314-1-PB.pdf?sequence=1 (accessed on 9 September 2021). [CrossRef] [PubMed]
- Malta, D.C. The COVID-19 Pandemic and changes in adult Brazilian lifestyles: A cross-sectional study. Epidemiol. Serv. Saude 2020, 29, e2020407. [Google Scholar] [CrossRef] [PubMed]
- Stanton, R.; To, Q.G.; Khalesi, S.; Williams, S.L.; Alley, S.J.; Thwaite, T.L.; Fenning, A.S.; Vandelanotte, C. Depression, Anxiety and Stress during COVID-19: Associations with Changes in Physical Activity, Sleep, Tobacco and Alcohol Use in Australian Adults. Int. J. Environ. Res. Public Health 2020, 17, 4065. [Google Scholar] [CrossRef] [PubMed]
- Malta, D.C.; Gomes, C.S.; Barros, M.; Lima, M.G. Noncommunicable diseases and changes in lifestyles during the COVID-19 pandemic in Brazil. Rev. Bras. Epidemiol. 2021, 24, e210009. [Google Scholar] [CrossRef]
- WHO. World Health Statistics 2021: Monitoring Health for the SDGs, Sustainable Development Goals. Available online: http://who.int/data/gho/publications/world-health-statistics/2021 (accessed on 9 September 2021).
- Gruber, T.R. A translation approach to portable ontology specifications. Knowl. Acquis. 1993, 5, 199–220. [Google Scholar] [CrossRef]
- Aguilar, J.; Jerez, M.; Rodríguez, T. CAMeOnto: Context awareness meta ontology modeling. Appl. Comput. Inform. 2018, 14, 202–213. [Google Scholar] [CrossRef]
- Alian, S.; Li, J.; Pandey, V. A personalized recommendation system to support diabetes self-Management for American Indians. IEEE Access 2018, 6, 73041–73051. [Google Scholar] [CrossRef]
- Fernandez, L.M.; Gômez, P.A. Overview and analysis of methodologies for building ontologies. Knowl. Eng. Rev. 2002, 17, 129–156. [Google Scholar] [CrossRef]
- Blomqvist, E. The Use of Semantic Web Technologies for Decision Support—A Survey. Semant. Web 2014, 5, 177–201. [Google Scholar] [CrossRef]
- De, S.; Zhou, Y.; Moessner, K. Chapter 1—Ontologies and context modeling for the Web of Things. Manag. Web Things 2017, 3–36. [Google Scholar] [CrossRef] [Green Version]
- WHO. Noncommunicable Diseases Country Profiles 2018. Available online: https://apps.who.int/iris/handle/10665/274512 (accessed on 9 September 2021).
- WHO. Global Action Plan for the Prevention and Control of Noncommunicable Diseases 2013–2020. 2013. Available online: https://www.who.int/publications/i/item/9789241506236 (accessed on 9 September 2021).
- WHO. WHO Report on the Global Tobacco Epidemic 2021: Addressing New and Emerging Products. Available online: https://www.who.int/publications/i/item/9789240032095 (accessed on 9 September 2021).
- WHO. Global Status Report on Alcohol and Health 2018. Available online: https://www.who.int/substance_abuse/publications/global_alcohol_report/en/ (accessed on 9 September 2021).
- IDF. International Diabetes Federation. IDF Diabetes Atlas, 9th edition 2019. Available online: https://www.diabetesatlas.org. (accessed on 9 September 2021).
- Eysenbach, G. What is e-health? J. Med. Internet Res. 2001, 3, 2. [Google Scholar] [CrossRef]
- Weiser, M. The Computer for the 21st Century. Sci. Am. 1991, 265, 94–104. Available online: https://www.jstor.org/stable/24938718 (accessed on 9 September 2021).
- Satyanarayanan, M. Pervasive Computing: Vision and Challenges. IEEE Pers. Commun. 2001, 4, 10–17. [Google Scholar] [CrossRef]
- Barbosa, J.L.V. Ubiquitous Computing: Applications and Research Opportunities. In Proceedings of the VI IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Madurai, India, 10–12 December 2015; pp. 1–8. [Google Scholar] [CrossRef]
- de Souza, R.S.; Lopes, J.L.; Geyer, C.F.R.; Cardozo, A.; Yamin, A.C.; Barbosa, J.L. An Architecture for IoT Management Targeted to Context Awareness of Ubiquitous Applications. J. Univers. Comput. Sci. 2018, 24, 1452–1471. [Google Scholar] [CrossRef]
- da Silva, L.G.; Neto, E.G.D.A.; Francisco, R.; Barbosa, J.L.V.; Silva, L.A.; Leithardt, V.R.Q. ULearnEnglish: An Open Ubiquitous System for Assisting in Learning English Vocabulary. Electronics 2021, 10, 1692. [Google Scholar] [CrossRef]
- Wagner, A.; Barbosa, J.L.V.; Barbosa, D.N.F. A model for profile management applied to ubiquitous learning environments. Expert Syst. Appl. 2014, 41, 2023–2034. [Google Scholar] [CrossRef]
- Barbosa, J.L.V.; Barbosa, D.N.F.; de Oliveira, J.M.; Andrade, R.S., Jr. A decentralized infrastructure for ubiquitous learning environments. J. Univers. Comput. Sci. 2014, 20, 1649–1669. [Google Scholar]
- Barbosa, J.L.V.; Hahn, R.M.; Barbosa, D.N.F.; Costa, Z.S.A.I.D. A ubiquitous learning model focused on learner interaction. Int. J. Learn. Technol. 2011, 6, 62–83. [Google Scholar] [CrossRef]
- Vianna, H.D.; Barbosa, J.L.V. A scalable model for building context-aware applications for noncommunicable diseases prevention. Inf. Process. 2019, 148, 1–6. [Google Scholar] [CrossRef]
- Machado, S.D.; Tavares, J.E.d.R.; Martins, M.G.; Barbosa, J.L.V.; Gonzalez, G.V.; Leithardt, V.R.Q. Ambient Intelligence Based on IoT for Assisting People with Alzheimer’s Disease Through Context Histories. Electronics 2021, 10, 1260. [Google Scholar] [CrossRef]
- Dias, L.P.S.; Barbosa, J.L.V.; Feijó, L.P.; Vianna, H.D. Development and testing of iAware model for ubiquitous care of patients with symptoms of stress, anxiety and depression. Comput. Methods Progr. Biomed. 2020, 187, 105113. [Google Scholar] [CrossRef] [PubMed]
- Petry, M.M.; Barbosa, J.L.V.; José, R.; Sandro, D.; Lucas, P.S.; Büttenbender, P. Toward a ubiquitous model to assist the treatment of people with depression. Univers. Access Inf. Soc. 2019, 19, 841–854. [Google Scholar] [CrossRef]
- Bavaresco, R.; Barbosa, J.; Vianna, H.; Büttenbender, P.; Dias, L. Design and evaluation of a context-aware model based on psychophysiology. Comput. Methods Progr. Biomed. 2020, 189, 105299. [Google Scholar] [CrossRef] [PubMed]
- Vianna, H.D.; Barbosa, J.L.V. A model for ubiquitous care of noncommunicable diseases. IEEE J. Biomed. Health Inform. 2014, 18, 1597–1606. [Google Scholar] [CrossRef]
- Vianna, H.D.; Barbosa, J.L.V.; Pittoli, F. In the Pursuit of Hygge Software. IEEE Softw. 2017, 34, 48–52. [Google Scholar] [CrossRef]
- Barbosa, J.; Tavares, J.; Cardoso, I.; Alves, B.; Martini, B. TrailCare: An Indoor and Outdoor Context-aware System to Assist Wheelchair Users. Int. J.-Hum.-Comput. Stud. 2018, 116, 1–14. [Google Scholar] [CrossRef]
- Tavares, J.; Barbosa, J.; Cardoso, I.; Costa, C.; Yamin, A.; Real, R. Hefestos: An intelligent system applied to ubiquitous accessibility. Univ. Access Inf. Soc. 2016, 15, 589–607. [Google Scholar] [CrossRef]
- Oliveira, J.L.; Souza, R.; Geyer, C.F.R.; Costa, C.A.; Barbosa, J.L.V.; Pernas, A.; Yamin, A.C. A Middleware Architecture for Dynamic Adaptation in Ubiquitous Computing. J. Univers. Comput. Sci. 2014, 20, 1327–1351. [Google Scholar]
- De Souza, R.S.; Afonso, C.; Anderson, Y.; Adenauer, G.; Ingrid, G.; Lopes, J.; Geyer, C.; João, S.; da Rosa, L.; Barbosa, J. Continuous monitoring seed testing equipments using internet of things. Comput. Electron. Agric. 2019, 158, 122–132. [Google Scholar] [CrossRef]
- Helfer, G.A.; Barbosa, J.L.V.; Santos, R.D.; Costa, A.B. A computational model for soil fertility prediction in ubiquitous agriculture. Comput. Electron. Agric. 2020, 175, 105602. [Google Scholar] [CrossRef]
- Lopes, H.; Pires, I.M.; Sánchez San Blas, H.; García-Ovejero, R.; Leithardt, V. PriADA: Management and Adaptation of Information Based on Data Privacy in Public Environments. Computers 2020, 9, 77. [Google Scholar] [CrossRef]
- Lucca, A.V.; Silva, L.A.; Luchtenberg, R.; Garcez, L.; Mao, X.; Ovejero, R.G.; Pires, I.M.; Barbosa, J.L.V.; Leithardt, V.R.Q. A Case Study on the Development of a Data Privacy Management Solution Based on Patient Information. Sensors 2020, 20, 6030. [Google Scholar] [CrossRef]
- Quinde, M.; Augusto, J.C.; Khan, N.; van Wyk, A. ADAPT: Approach to Develop context-Aware solutions for Personalised asthma management. J. Biomed. Inform. 2020, 111, 103586. [Google Scholar] [CrossRef]
- Seys, S.F.; de Bont, S.; Fokkens, W.J. Real-life assessment of chronic rhinosinusitis patients using mobile technology: The mySinusitisCoach project by EUFOREA. Allergy 2020, 75, 2867–2878. [Google Scholar] [CrossRef]
- Cárdenas-Robledo, L.A.; Peña-Ayala, A. Ubiquitous learning: A systematic review. Telemat. Inform. 2018, 35, 1097–1132. [Google Scholar] [CrossRef]
- Mota, F.; Tolêdo, F.; Kwecko, V.; Devicenzi, S.; Nunez, P.; Botelho, S. Ubiquitous Learning: ASystematic Review. In Proceedings of the IEEE Frontiers in Education Conference (FIE), Covington, KY, USA, 16–19 October2019. [Google Scholar]
- Dey, A.K. Understanding and Using Context. J. Pers. Ubiquitous Comput. 2001, 5, 4–7. [Google Scholar] [CrossRef]
- Dey, A.K.; Abowd, G.; Salber, D. A Conceptual Framework and a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications. Hum.-Comput. Interact. 2001, 16, 97–166. [Google Scholar] [CrossRef]
- Barbosa, J.L.V.; Martins, C.J.; Franco, L.K.; Barbosa, D.N.F. TrailTrade: A model for trail-aware commerce support. Comput. Ind. 2016, 80, 43–53. [Google Scholar] [CrossRef]
- Martini, B.G.; Helfer, G.A.; Barbosa, J.L.V.; Espinosa, M.R.C.; da Silva, M.R.; de Figueiredo, R.M.; Mendes, A.S.; Silva, L.A.; Leithardt, V.R.Q. IndoorPlant: A Model for Intelligent Services in Indoor Agriculture Based on Context Histories. Sensors 2021, 21, 1631. [Google Scholar] [CrossRef]
- Rosa, J.H.; Barbosa, J.L.V.; Kich, M.R.; Brito, L.K. A Multi-Temporal Context-aware System for Competences Management. Int. J. Artif. Intell. Educ. 2015, 25, 455–492. [Google Scholar] [CrossRef] [Green Version]
- Filippetto, A.S.; Lima, R.K.; Barbosa, J.L.V. A Risk Prediction Model for Software Project Management based on Similarity Analysis of Context Histories. Inf. Softw. Technol. 2021, 131, 106497. [Google Scholar] [CrossRef]
- Cardoso, I.G.; Barbosa, J.L.V.; Mota, B.; Dias, L.P.S.; Nesi, L.C. Vulcont: A recommender system based on context history ontology. IET Softw. 2021, 1, 1–13. [Google Scholar] [CrossRef]
- Dupont, D.; Barbosa, J.L.V.; Alves, B.M. CHSPAM: A multi-domain model for sequential pattern discovery and monitoring in contexts histories. Pattern Anal. Appl. 2020, 23, 725–734. [Google Scholar] [CrossRef]
- Da Rosa, J.H.; Barbosa, J.L.V.; Ribeiro, G.D. ORACON: An adaptive model for context prediction. Expert Syst. Appl. 2016, 45, 56–70. [Google Scholar] [CrossRef]
- Larentis, A.V.; Barbosa, D.N.F.; da Silva, C.R.; Barbosa, J.L.V. Applied Computing to Education on Noncommunicable Chronic Diseases: A Systematic Mapping Study. Telemed. e-Health 2019, 26, 147–163. [Google Scholar] [CrossRef]
- Tudorache, T.; Nyulas, C.I.; Noy, N.F.; Musen, M.A. Using Semantic Web in ICD-11: Three Years Down the Road. Comput. Sci. 2013, 8219, 195–211. [Google Scholar] [CrossRef]
- Tudorache, T. Ontology Development for the Masses: Creating ICD-11 in WebProtégé. Comput. Sci. 2010, 6317, 74–89. [Google Scholar] [CrossRef]
- Spoladore, D.; Arlati, S.; Colombo, V.; Modoni, G.; Sacco, M. A Semantic-Enabled Smart Home for AAL and Continuity of Care. In IoT in Healthcare and Ambient Assisted Living; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Spoladore, D.; Sacco, M. Semantic and Dweller-Based Decision Support System for the Reconfiguration of Domestic Environments: RecAAL. Electronics 2018, 7, 179. [Google Scholar] [CrossRef] [Green Version]
- Bravo, M. Management of diabetic patient profiles using ontologies. Contaduría y Administración 2020, 65, 218. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=7731048 (accessed on 9 September 2021). [CrossRef]
- Chen, L. OMDP: An ontology-based model for diagnosis and treatment of diabetes patients in remote healthcare systems. Int. J. Distrib. Sens. Netw. 2019, 15. [Google Scholar] [CrossRef]
- El-Sappagh, S.; Ali, F. DDO: A diabetes mellitus diagnosis ontology. Appl. Inform. 2016, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- El-Sappagh, S.; Kwak, D.; Ali, F.; Kwak, K. DMTO: A realistic ontology for standard diabetes mellitus treatment. J. Biomed. Semant. 2018, 9, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madhusanka, S.; Walisadeera, A.; Dantanarayana, G.; Goonetillake, J.; Ginige, A. An Ontological Clinical Decision Support System Based on Clinical Guidelines for Diabetes Patients in Sri Lanka. Healthcare 2020, 8, 573. [Google Scholar] [CrossRef] [PubMed]
- Somodevilla, M.J. Discovering semantic relationships between NCD and lifestyle patterns using ontologies. Res. Comput. Sci. 2015, 99, 19–28. Available online: https://rcs.cic.ipn.mx/2015_99/RCS_99_2015.pdf#page=19 (accessed on 9 September 2021). [CrossRef]
- Vianna, H.D.; Barbosa, J.L.V.; Gluz, J.C.; dos Santos, R.B.S. Design of an ontology for detecting the social influence on non-communicable diseases risk factors. Int. J. Metadata Semant. Ontol. 2018, 13, 120–130. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, Y.; Li, Q.; George, T.J.; Shenkman, E.; Modave, F.; Bian, J. An ontology-guided semantic data integration framework to support integrative data analysis of cancer survival. BMC Med. Inform. Decis. Mak. 2018, 18, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noy, N.F.; Mcguinness, D.L. Ontology Development 101: A guide to creating your first ontology. Stanford KSL Technical Report KSL-01-05 and Stanford Medical Informatics Technical Report SMI-2001-0880. Knowl. Syst. Lab. 2001, 32, 1–25. [Google Scholar]
- Grüninger, M.; Fox, M.S. Methodology for the design and evaluation of ontologies. In Workshop on Basic Ontological Issues in Knowledge Sharing; IJCAI-95; Montreal, QC, Canada, 1995; Available online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.8723 (accessed on 10 October 2021).
- Corcho, O.; Fernández-López, M.; Gómez-Pérez, A.; López-Cima, A. Building Legal Ontologies with METHONTOLOGY and WebODE. Lect. Notes Comput. Sci. 2005, 3369, 142–157. [Google Scholar] [CrossRef] [Green Version]
- Villazón-Terrazas, B.; Ramírez, J.; Suárez-Figueroa, M.C.; Gómez-Perez, A. A network of ontology networks for building e-employment advanced systems. Expert Syst. Appl. 2011, 38, 13612–13624. [Google Scholar] [CrossRef] [Green Version]
- Sure, Y.; Staab, S.; Studer, R. On-To-Knowledge Methodology (OTKM). In Handbook on Ontologies; Staab, S., Studer, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 6, pp. 117–132. [Google Scholar] [CrossRef]
- De Nicola, A.; Missikoff, M.; Navigli, R. A proposal for a unified process for ontology building: UPON. In Database and Expert Systems Applications. DEXA; Andersen, K.V., Debenham, J., Wagner, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 655–664. [Google Scholar]
- Uschold, M.; Gruninger, M. Ontologies: Principles, methods and applications. Knowl. Eng. Rev. 1996, 2, 93–136. [Google Scholar] [CrossRef] [Green Version]
- Uschold, M.; King, M. Towards a methodology for building ontologies. In Workshop on Basic Ontological Issues in Knowledge Sharing, Held in Conjunction with IJCAI-95; Artificial Intelligence Applications Institute, University of Edinburgh: Edinburgh, Scotland, 1995; Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.697.8733&rep=rep1&type=pdf (accessed on 21 September 2021).
- Skillen, K.L. Ontological user profile modeling for context-aware application personalization. In Proceedings of the International Conference on Ubiquitous Computing and Ambient Intelligence (UCAml), Vitoria-Gasteiz, Spain, 3–5 December 2012; pp. 261–268. [Google Scholar] [CrossRef]
- Schriml, L.M. Human Disease Ontology 2018 update: Classification, content and workflow expansion. Nucleic Acids Res. 2019, 47, 955–962. [Google Scholar] [CrossRef] [Green Version]
- Novak, J.D.; Cañas, A.J. Theoretical Origins of Concept Maps, How to Construct Them, and Uses in Education; Reflecting Education: London, UK, 2007; Volume 3, pp. 29–42. Available online: https://www.researchgate.net/profile/Alberto_Canas/publication/228761562_Theoretical_origins_of_concept_maps_how_to_construct_them_and_uses_in_education/links/0fcfd50be1868a1f0c000000/Theoretical-origins-of-concept-maps-how-to-construct-them-and-uses-in-education.pdf (accessed on 9 September 2021).
- Novak, J.; Gowin, D.; Kahle, J. Concept mapping for meaningful learning. In Learning How to Learn; Cambridge University Press: Cambridge, UK, 1984; pp. 15–54. [Google Scholar] [CrossRef]
- WHO. Preventing Chronic Diseases: A Vital Investment: WHO Global Report. Available online: https://apps.who.int/iris/handle/10665/43314 (accessed on 9 September 2021).
- Musen, M.A. The protégé project: A look back and a look forward. AI Matters 2015, 1, 4–12. [Google Scholar] [CrossRef]
- FHS. Framingham Heart Study. History of the Framingham Heart Study. Available online: https://framinghamheartstudy.org/fhs-about/history/ (accessed on 9 September 2021).
- O’Connor, M. Supporting Rule System Interoperability on the semantic web with SWR. In Fourth International Semantic Web Conference; Springer: Berlin/Heidelberg, Germany, 2005; pp. 974–986. [Google Scholar] [CrossRef] [Green Version]
- Barroso, W.K.S.; Rodrigues, C.I.S.; Bortolotto, L.A.; Mota-Gomes, M.A.; Brandão, A.A.; Feitosa, A.D.M. Diretrizes Brasileiras de Hipertensão Arterial—2020. Arq. Bras. Cardiol. 2021, 116, 516–658. [Google Scholar] [CrossRef]
- Johnson, A.; Pollard, T.; Mark, R. MIMIC-III Clinical Database Demo. PhysioNet. Available online: https://physionet.org/content/mimiciii-demo/1.4/ (accessed on 9 September 2021).
- Goldberger, A.L. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Johnson, A.E.W. MIMIC-III, a freely accessible critical care database. Sci. Data 2016, 3, 160035. [Google Scholar] [CrossRef] [Green Version]
- Simperl, E.P.B.; Tempich, C. Ontology engineering: A reality check. In On the Move to Meaningful Internet Systems, Proceedings of the OTM Confederated International Conferences; Springer: Berlin/Heidelberg, Germany, 2006; pp. 836–854. [Google Scholar]
- Spoladore, D.; Pessot, E. Collaborative Ontology Engineering Methodologies for the Development of Decision Support Systems: Case Studies in the Healthcare Domain. Electronics 2021, 10, 1060. [Google Scholar] [CrossRef]
Reference | Rules | Queries | Reuse | Chronic Disease | Evaluation |
---|---|---|---|---|---|
Alian et al. [10] | Yes | No | Yes | Diabetes | Use case studies |
Bravo et al. [60] | No | No | Yes | Type 2 diabetes | Use case studies |
Chen et al. [61] | Yes | No | Yes | Type 1 and type 2 diabetes | Records from the First Affiliated Hospital, Sun Yat-sen University |
El-Sappagh and Ali [62] | Yes | No | Yes | Type 2 diabetes | Internal reasoner and queries; external (domain experts) |
El-Sappagh et al. [63] | Yes | No | Yes | Type 2 diabetes | Internal reasoner and queries; use case for inference check |
Madhusanka et al. [64] | Yes | Yes | No | Type 1 and type 2 diabetes and gestational diabetes | Internal reasoner and queries; external (health professionals) |
Somodevilla et al. [65] | Yes | No | Yes | NCDs | Public dataset |
Vianna et al. [66] | Yes | Yes | No | NCDs | Fictitious data |
Zhang et al. [67] | No | Yes | Yes | Cancer | SPARQL queries using five data sources |
This study | Yes | Yes | Yes | NCDs | Public dataset |
Class | Description |
---|---|
ChronicDisease | This class is made up of the NCDs defined by the WHO. |
Competence | Class consisting of learning competencies such as attitude, skill, knowledge, and self-knowledge. |
Context | Class that represents the context of the person. It includes information about activities performed and location. |
ContextHistories | This class represents a set of contexts recorded on the timeline. |
Education | This class conceptualizes the educational process in the ontology, which occurs through learning and interaction. |
Interaction | Class representing interactions between people, i.e., groups of people or spontaneous social networks. |
Learning | Class representing recommendation of content, places, or notifications (alerts, reminders, and messages). |
Mortality | This class represents the NCD mortality rates when a person has died. |
Notification | This class consists of the notifications sent to the person via alerts, messages, and/or reminders. |
Person | Class representing the person who is educationally assisted. |
PersonProfile | Class that includes sociodemographic, health, dietary, and lifestyle information. |
Recommendation | This class constituted the recommendations made through the indication of contents and/or places. |
RiskFactors | This class included the risk factors for NCDs subdivided into modifiable, nonmodifiable, and intermediate risk factors. |
RiskLevel | Class that includes indicators of a NCD risk score. |
Rule Name | SWRL Expression |
---|---|
R1_Diabetic_diabetes | Recommendation(?r) ˆ hasKeyword(?r,“diabetes”) ˆ PersonProfile (?p) ˆ isDiabetic(?p,“S”) ->PersonProfile(?r) |
R2_Diabetic_glycemia | Recommendation(?r) ˆ hasKeyword(?r,“glicemia”) ˆ PersonProfile (?p)ˆ isDiabetic(?p,“S”) -> PersonProfile(?r) |
R3_Diabetic_glucose | Recommendation(?r) ˆ hasKeyword(?r,“glicose”) ˆ PersonProfile (?p) ˆ isDiabetic(?p,“S”) -> PersonProfile(?r) |
R4_Hypertension | Recommendation(?r) ˆ hasKeyword(?r,“hipertensao”) ˆ PersonProfile (?p)ˆ hasSystolicBloodPressure(?p, ?v) ˆ swrlb:greaterThan(?v, 140 -> PersonProfile(?r) |
R5_Smoker_stop_ smoking | Recommendation(?r) ˆ hasKeyword(?r,“parar_fumar”) ˆ PersonProfile (?p)ˆ isSmoker(?p,“S”) -> PersonProfile(?r) |
R6_Smoker_smoking | Recommendation(?r) ˆ hasKeyword(?r, “tabagismo”) ˆ PersonProfile (?p)ˆ isSmoker(?p,“S”) -> PersonProfile(?r) |
Metrics | Values |
---|---|
Axiom | 575 |
Logical axiom count | 374 |
Declaration axioms count | 201 |
Classes count | 76 |
Subclasses count | 62 |
Object property count | 31 |
Data property count | 54 |
Individual count | 39 |
Code | Query |
---|---|
CQ1 | 1 SELECT ?Person ?hasName ?hasRiskScoreCVD 2 WHERE{?Person ex:hasPersonProfile ?PersonProfile 3 ?Person ex:hasName ?hasName ?PersonProfile ex:hasRiskScoreCVD 4 ?hasRiskScoreCVD 5 FILTER(?hasRiskScoreCVD >=20) } ORDER BY ?Person |
CQ2 | 1 SELECT ? Person ?hasName ?hasRiskScoreCVD 2 WHERE{?Person ex:hasPersonProfile ?PersonProfile 3 ?Person ex:hasName ?hasName ?PersonProfile 4 ex:hasRiskScoreCVD ?hasRiskScoreCVD 5 FILTER(?hasRiskScoreCVD >= 10 && ?hasriskScoreCVD < 20) } 6 ORDER BY ?Person |
CQ3 | 1 SELECT ?Site ?hasDomain ?hasKeyword ?hasDesContent ?hasURL 2 WHERE {?Site ex:hasDomain ?hasDomain ?Site ex:hasKeyword ?hasKeyword 3 ?Site ex:hasDesContent ?hasDescontent ?Site ex:hasURL ?hasURL 4 FILTER{?hasKeyword = “diabetes” || ?hasKeyword = 5 “glicose_alta” || ?hasKeyword = “glicemia”) } ORDER BY ?Site |
CQ4 | 1 SELECT ?Site ?hasDomain ?hasKeyword ?hasDesContent ?hasURL 2 WHERE {?Site ex:hasDomain ?hasDomain ?Site ex:hasKeyword ?hasKeyword 3 ?Site ex:hasDesContent ?hasDescontent ?Site ex:hasURL ?hasURL 4 FILTER{?hasKeyword = “parar_fumar” || ?hasKeyword = “tabagismo” ) } 5 ORDER BY ?Site |
CQ5 | 1 SELECT ?Person ?hasName ? hasSystolicBloodPressure 2 WHERE { ?Person ex:hasPersonProfile ?PersonProfile 3 ?PersonProfile ex:hasClinicalData ?ClinicalData 4 ?Person ex:hasName ?hasName 5 ?ClinicalData ex:hasSystolicBloodPressure ?hasSystolicBloodPressure 6 FILTER (?hasSystolicBloodPressure >= 140) } 7 ORDER BY ?Person |
CQ6 | 1 SELECT ?Site ?hasDomain ?hasKeyword ?hasDesContent ?hasURL 2 WHERE {?Site ex:hasDomain ?hasDomain 3 ?Site ex:hasKeyword ?hasKeyword 4 ?Site ex:hasDesContent ?hasDesContent 5 ?Site ex:hasURL ?hasURL 6 FILTER (?hasKeyword = “hipertensao” || ?hasKeyword = “hipotensao”) } 7 ORDER BY ?Site |
CQ7 | 1 SELECT ?Person ?hasName ?hasHistoryHipertension 2 ?hasHistoryDiabetes ?hasHistoryCancer ?hasHistoryOtherDiseases 3 WHERE { ?Person ex:hasPersonProfile ?PersonProfile 4 ?PersonProfile ex:hasFamiliarHistory ?FamiliarHistory 5 ?PersonProfile ex:hasClinicalData ?ClinicalData 6 ?Person ex:hasName ?hasName 7 ?ClinicalData ex:hasSystolicBloodPressure ?hasSystolicBloodPressure 8 ?FamiliarHistory ex:hasHistoryHipertension ?hasHistoryHipertension 9 ?FamiliarHistory ex:hasHistoryDiabetes ?hasHistoryDiabetes 10 ?FamiliarHistory ex:hasHistoryCancer ?hasHistoryCancer 11 ?FamiliarHistory ex:hasHistoryOtherDiseases ?hasHistoryOtherDiseases 12 FILTER (?hasHistoryHipertension = “S” || ?hasHistoryDiabetes = “S” || 13 ?hasHistoryCancer = “S” || ?hasHistoryOtherDiseases = “S”) } 14 ORDER BY ?Person |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larentis, A.V.; Neto, E.G.d.A.; Barbosa, J.L.V.; Barbosa, D.N.F.; Leithardt, V.R.Q.; Correia, S.D. Ontology-Based Reasoning for Educational Assistance in Noncommunicable Chronic Diseases. Computers 2021, 10, 128. https://doi.org/10.3390/computers10100128
Larentis AV, Neto EGdA, Barbosa JLV, Barbosa DNF, Leithardt VRQ, Correia SD. Ontology-Based Reasoning for Educational Assistance in Noncommunicable Chronic Diseases. Computers. 2021; 10(10):128. https://doi.org/10.3390/computers10100128
Chicago/Turabian StyleLarentis, Andrêsa Vargas, Eduardo Gonçalves de Azevedo Neto, Jorge Luis Victória Barbosa, Débora Nice Ferrari Barbosa, Valderi Reis Quietinho Leithardt, and Sérgio Duarte Correia. 2021. "Ontology-Based Reasoning for Educational Assistance in Noncommunicable Chronic Diseases" Computers 10, no. 10: 128. https://doi.org/10.3390/computers10100128
APA StyleLarentis, A. V., Neto, E. G. d. A., Barbosa, J. L. V., Barbosa, D. N. F., Leithardt, V. R. Q., & Correia, S. D. (2021). Ontology-Based Reasoning for Educational Assistance in Noncommunicable Chronic Diseases. Computers, 10(10), 128. https://doi.org/10.3390/computers10100128