Pricing and Hedging Index Options under Mean-Variance Criteria in Incomplete Markets
<p>Optimized portfolio in the put options (<b>left</b>) and the call options (<b>right</b>).</p> "> Figure 2
<p>The payoffs of the optimal portfolios as functions of the S&P 500 index.</p> "> Figure 3
<p>The coefficient frontier of the variance minimization.</p> "> Figure 4
<p>The payoffs of the optimized portfolios as functions of the index value at the expiry date obtained with <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math> (<b>left</b>), and the kernel density of the payoff of at the optimized portfolios obtained with 10,000 out-of-sample simulations (<b>right</b>).</p> "> Figure 5
<p>The minimum standard deviation of the portfolio payout distribution with <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mn>0.1</mn> <mo>,</mo> <mn>0.05</mn> </mrow> </semantics></math> (<b>left</b>), the kernel density estimation of the portfolio payout with <math display="inline"><semantics> <mrow> <mi>r</mi> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mn>0.1</mn> <mo>,</mo> <mn>0.05</mn> </mrow> </semantics></math> (<b>right</b>).</p> "> Figure 6
<p>The transaction cost of the portfolio payout.</p> "> Figure 7
<p>The payoffs of the optimized portfolios obtained with <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math> (<b>left</b>) and <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>=</mo> <mn>0.00001</mn> </mrow> </semantics></math> (<b>right</b>).</p> "> Figure 8
<p>The payoff of the hedging portfolio together with the payoff of the claim being priced of a call option (<b>left</b>), the hedging portfolios for the put option (<b>center</b>) and call option (<b>right</b>).</p> "> Figure 9
<p>The payoff of the hedging portfolio together with the payoff of the claim being priced of a quadratic option (<b>left</b>), the hedging portfolios for the put option (<b>center</b>) and call option (<b>right</b>).</p> "> Figure 10
<p>The payoff of the hedging portfolio together with the payoff of the claim being priced of a log-option (<b>left</b>), the hedging portfolios for the put option (<b>center</b>) and call option (<b>right</b>).</p> "> Figure 11
<p>The payoff of the hedging portfolio together with the payoff of the claim being priced of a price digital (<b>left</b>), the hedging portfolios for the put option (<b>center</b>) and call option (<b>right</b>).</p> "> Figure 12
<p>The payoff of the hedging portfolio with the payoff of the claim being priced of a butterfly spread option (<b>left</b>), the hedging portfolios for the put option (<b>center</b>) and call option (<b>right</b>).</p> "> Figure 13
<p>The payoff of the hedging portfolio together with the payoff of the claim being priced of a sine option (<b>left</b>), the hedging portfolios for the put option (<b>center</b>) and call option (<b>right</b>).</p> ">
Abstract
:1. Introduction
2. Methodology
2.1. Data
2.2. Portfolio Optimization
2.2.1. Asset-Liability Management (ALM) Model
2.2.2. ALM Algorithms
- 1.
- Find the matrix of the payoffs of the assets. The matrix has the dimension of where Q is the number of simulations and L is the number of total tradable assets.
- (a)
- Calculate the payoff of the cash after 30 days.
- (b)
- Simulate a large numbers of the future index values after 30 days.
- (c)
- Compute the payoffs of all options based on the simulated values of the index.
- 2.
- Calculate means and covariances of payoffs.
- 3.
- Use the built-in quadprog function in Matlab to solve the problem.
| |
| |
| |
| |
| |
| |
| |
Algorithm 1: Return the payoffs of the assets based on the simulated values of the index (PayoffMatrix). |
|
Algorithm 2: Variance minimization (VarianceMinimize). |
|
2.3. Indifference Pricing and Hedging
2.3.1. Indifference Pricing Model
2.3.2. Indifference Pricing Algorithm
Algorithm 3: Indifference prices and hedging portfolios (IndifferencePrices). |
|
3. Results and Discussion
3.1. Results: Portfolio Optimization
3.1.1. Optimized Portfolio
3.1.2. Portfolio Sensitivity
3.2. Results: Static Hedging
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CVaR | conditional value-at-risk |
ECIR | extended Cox–Ingersoll–Ross |
S&P 500 | standard and poor’s 500 index |
VaR | value-at-risk |
Appendix A
A | B | C | D | E | F | A | B | C | D | E | F |
---|---|---|---|---|---|---|---|---|---|---|---|
Strike | Bid | Ask | IsPut | Bid Size | Ask Size | Strike | Bid | Ask | IsPut | Bid Size | Ask Size |
265 | 31.84 | 32.36 | 0 | 10 | 10 | 322 | 0.43 | 0.48 | 0 | 19 | 10 |
270 | 27.42 | 27.9 | 0 | 10 | 10 | 323 | 0.39 | 0.43 | 0 | 9 | 17 |
275 | 23.14 | 23.56 | 0 | 10 | 10 | 325 | 0.31 | 0.35 | 0 | 6 | 16 |
278 | 20.65 | 21.04 | 0 | 10 | 10 | 327 | 0.25 | 0.28 | 0 | 5 | 13 |
279 | 19.9 | 20.1 | 0 | 1 | 1 | 328 | 0.22 | 0.26 | 0 | 14 | 20 |
280 | 19.08 | 19.29 | 0 | 1 | 1 | 330 | 0.18 | 0.21 | 0 | 5 | 19 |
281 | 18.28 | 18.5 | 0 | 1 | 1 | 335 | 0.11 | 0.14 | 0 | 1 | 3 |
282 | 17.49 | 17.68 | 0 | 16 | 16 | 340 | 0.06 | 0.1 | 0 | 1 | 1 |
283 | 16.71 | 16.9 | 0 | 32 | 32 | 345 | 0.01 | 0.07 | 0 | 1050 | 1 |
284 | 15.92 | 16.12 | 0 | 48 | 48 | 350 | 0.02 | 0.05 | 0 | 1 | 1 |
285 | 15.16 | 15.37 | 0 | 48 | 48 | 250 | 1.12 | 1.17 | 1 | 16 | 10 |
286 | 14.41 | 14.59 | 0 | 64 | 64 | 255 | 1.4 | 1.48 | 1 | 15 | 210 |
287 | 13.67 | 13.85 | 0 | 80 | 80 | 260 | 1.76 | 1.84 | 1 | 8 | 134 |
288 | 12.93 | 13.11 | 0 | 80 | 80 | 264 | 2.11 | 2.2 | 1 | 13 | 108 |
289 | 12.22 | 12.39 | 0 | 96 | 96 | 266 | 2.32 | 2.4 | 1 | 6 | 2 |
290 | 11.51 | 11.69 | 0 | 96 | 96 | 267 | 2.42 | 2.51 | 1 | 6 | 5 |
291 | 10.82 | 11 | 0 | 112 | 112 | 268 | 2.54 | 2.62 | 1 | 2 | 14 |
292 | 10.14 | 10.34 | 0 | 162 | 112 | 269 | 2.65 | 2.74 | 1 | 4 | 106 |
293 | 9.49 | 9.68 | 0 | 162 | 112 | 271 | 2.9 | 2.99 | 1 | 1 | 107 |
294 | 8.85 | 9.04 | 0 | 50 | 128 | 272 | 3.02 | 3.13 | 1 | 2 | 100 |
295 | 8.24 | 8.42 | 0 | 50 | 128 | 273 | 3.16 | 3.27 | 1 | 2 | 101 |
296 | 7.65 | 7.82 | 0 | 50 | 128 | 274 | 3.29 | 3.41 | 1 | 100 | 101 |
297 | 7.07 | 7.25 | 0 | 50 | 128 | 276 | 3.61 | 3.72 | 1 | 1 | 100 |
298 | 6.52 | 6.69 | 0 | 50 | 128 | 277 | 3.77 | 3.89 | 1 | 1 | 100 |
299 | 6 | 6.16 | 0 | 50 | 128 | 307 | 14.8 | 15.08 | 1 | 1 | 1 |
300 | 5.5 | 5.65 | 0 | 50 | 144 | 308 | 15.4 | 15.84 | 1 | 10 | 10 |
301 | 5.02 | 5.16 | 0 | 50 | 144 | 309 | 16.12 | 16.58 | 1 | 10 | 10 |
302 | 4.57 | 4.71 | 0 | 50 | 160 | 311 | 17.64 | 18.14 | 1 | 10 | 10 |
303 | 4.14 | 4.28 | 0 | 50 | 176 | 312 | 18.43 | 18.95 | 1 | 10 | 10 |
304 | 3.74 | 3.88 | 0 | 50 | 192 | 313 | 19.24 | 19.78 | 1 | 10 | 10 |
305 | 3.37 | 3.5 | 0 | 100 | 308 | 314 | 20.07 | 20.63 | 1 | 10 | 10 |
306 | 3.03 | 3.15 | 0 | 100 | 324 | 316 | 21.78 | 22.39 | 1 | 10 | 10 |
310 | 1.91 | 2 | 0 | 110 | 1 | 317 | 22.66 | 23.29 | 1 | 10 | 10 |
315 | 1.02 | 1.1 | 0 | 5 | 9 | 318 | 23.56 | 24.2 | 1 | 10 | 10 |
320 | 0.55 | 0.6 | 0 | 7 | 11 | 319 | 24.47 | 25.12 | 1 | 10 | 10 |
265 | 2.21 | 2.29 | 1 | 9 | 2 | 321 | 26.32 | 27 | 1 | 10 | 10 |
270 | 2.77 | 2.86 | 1 | 4 | 4 | 322 | 27.25 | 27.95 | 1 | 10 | 10 |
275 | 3.45 | 3.56 | 1 | 2 | 100 | 323 | 28.2 | 28.9 | 1 | 10 | 10 |
278 | 3.94 | 4.06 | 1 | 1 | 100 | 325 | 30.11 | 30.83 | 1 | 10 | 10 |
279 | 4.1 | 4.24 | 1 | 100 | 100 | 327 | 32.04 | 32.77 | 1 | 10 | 10 |
280 | 4.29 | 4.43 | 1 | 100 | 100 | 328 | 33.01 | 33.75 | 1 | 10 | 10 |
281 | 4.47 | 4.62 | 1 | 50 | 50 | 330 | 34.96 | 35.71 | 1 | 10 | 10 |
282 | 4.68 | 4.83 | 1 | 50 | 50 | 335 | 39.88 | 40.65 | 1 | 10 | 10 |
283 | 4.89 | 5.04 | 1 | 50 | 50 | 340 | 44.83 | 45.61 | 1 | 10 | 10 |
284 | 5.11 | 5.27 | 1 | 50 | 50 | 345 | 49.8 | 50.58 | 1 | 10 | 10 |
285 | 5.34 | 5.5 | 1 | 50 | 50 | 350 | 54.78 | 55.57 | 1 | 10 | 10 |
286 | 5.58 | 5.75 | 1 | 50 | 50 | 329 | 0.2 | 0.23 | 0 | 6 | 18 |
287 | 5.83 | 6.01 | 1 | 50 | 50 | 329 | 33.99 | 34.73 | 1 | 10 | 10 |
288 | 6.1 | 6.28 | 1 | 50 | 50 | 331 | 0.16 | 0.2 | 0 | 16 | 24 |
289 | 6.37 | 6.57 | 1 | 50 | 50 | 332 | 0.15 | 0.18 | 0 | 6 | 18 |
290 | 6.72 | 6.86 | 1 | 144 | 50 | 331 | 35.94 | 36.7 | 1 | 10 | 10 |
291 | 6.97 | 7.18 | 1 | 50 | 50 | 332 | 36.92 | 37.68 | 1 | 10 | 10 |
292 | 7.3 | 7.51 | 1 | 50 | 50 | 333 | 0.13 | 0.17 | 0 | 19 | 28 |
293 | 7.7 | 7.86 | 1 | 128 | 50 | 333 | 37.91 | 38.67 | 1 | 10 | 10 |
294 | 7.99 | 8.23 | 1 | 50 | 50 | 334 | 0.12 | 0.15 | 0 | 1 | 6 |
295 | 8.37 | 8.61 | 1 | 50 | 50 | 334 | 38.89 | 39.66 | 1 | 10 | 10 |
296 | 8.77 | 9.02 | 1 | 50 | 50 | 336 | 0.1 | 0.13 | 0 | 1 | 3 |
297 | 9.18 | 9.44 | 1 | 142 | 13 | 336 | 40.87 | 41.64 | 1 | 10 | 10 |
298 | 9.62 | 9.9 | 1 | 13 | 13 | 337 | 0.09 | 0.12 | 0 | 1 | 12 |
299 | 10.09 | 10.37 | 1 | 125 | 13 | 338 | 0.08 | 0.11 | 0 | 6 | 17 |
300 | 10.59 | 10.87 | 1 | 112 | 13 | 337 | 41.86 | 42.63 | 1 | 10 | 10 |
301 | 11.11 | 11.4 | 1 | 96 | 109 | 338 | 42.85 | 43.62 | 1 | 10 | 10 |
302 | 11.65 | 11.94 | 1 | 80 | 80 | 339 | 0.07 | 0.11 | 0 | 18 | 12 |
303 | 12.22 | 12.52 | 1 | 64 | 64 | 341 | 0.03 | 0.11 | 0 | 1050 | 950 |
304 | 12.8 | 13.13 | 1 | 48 | 48 | 339 | 43.84 | 44.61 | 1 | 10 | 10 |
305 | 13.46 | 13.74 | 1 | 32 | 32 | 341 | 45.83 | 46.6 | 1 | 10 | 10 |
306 | 14.11 | 14.4 | 1 | 16 | 16 | 342 | 0.02 | 0.11 | 0 | 1250 | 1050 |
310 | 16.87 | 17.35 | 1 | 10 | 10 | 342 | 46.82 | 47.6 | 1 | 10 | 10 |
315 | 20.92 | 21.5 | 1 | 10 | 10 | 343 | 0.02 | 0.1 | 0 | 950 | 950 |
320 | 25.39 | 26.06 | 1 | 10 | 10 | 344 | 0.04 | 0.1 | 0 | 1 | 900 |
324 | 0.34 | 0.39 | 0 | 14 | 25 | 343 | 47.81 | 48.59 | 1 | 10 | 10 |
324 | 29.15 | 29.87 | 1 | 10 | 10 | 344 | 48.81 | 49.59 | 1 | 10 | 10 |
326 | 0.28 | 0.31 | 0 | 6 | 11 | 346 | 0.03 | 0.09 | 0 | 1 | 950 |
326 | 31.07 | 31.8 | 1 | 10 | 10 | 346 | 50.8 | 51.58 | 1 | 10 | 10 |
250 | 45.66 | 46.3 | 0 | 10 | 10 | 347 | 51.8 | 52.58 | 1 | 10 | 10 |
255 | 40.96 | 41.57 | 0 | 10 | 10 | 348 | 52.79 | 53.57 | 1 | 10 | 10 |
260 | 36.36 | 36.93 | 0 | 10 | 10 | 349 | 53.79 | 54.57 | 1 | 10 | 10 |
264 | 32.73 | 33.27 | 0 | 10 | 10 | 262 | 34.54 | 35.09 | 0 | 10 | 10 |
266 | 30.95 | 31.46 | 0 | 10 | 10 | 263 | 33.63 | 34.18 | 0 | 10 | 10 |
267 | 30.06 | 30.56 | 0 | 10 | 10 | 262 | 1.93 | 2.01 | 1 | 7 | 26 |
268 | 29.18 | 29.67 | 0 | 10 | 10 | 263 | 2.02 | 2.1 | 1 | 12 | 5 |
269 | 28.3 | 28.78 | 0 | 10 | 10 | 251 | 44.71 | 45.35 | 0 | 10 | 10 |
271 | 26.56 | 27.02 | 0 | 10 | 10 | 252 | 43.77 | 44.4 | 0 | 10 | 10 |
272 | 25.7 | 26.15 | 0 | 10 | 10 | 253 | 42.83 | 43.45 | 0 | 10 | 10 |
273 | 24.84 | 25.28 | 0 | 10 | 10 | 254 | 41.9 | 42.51 | 0 | 10 | 10 |
274 | 23.99 | 24.42 | 0 | 10 | 10 | 256 | 40.03 | 40.63 | 0 | 10 | 10 |
276 | 22.31 | 22.71 | 0 | 10 | 10 | 257 | 39.11 | 39.7 | 0 | 10 | 10 |
277 | 21.48 | 21.87 | 0 | 10 | 10 | 258 | 38.2 | 38.78 | 0 | 10 | 10 |
307 | 2.71 | 2.83 | 0 | 100 | 340 | 259 | 37.28 | 37.86 | 0 | 10 | 10 |
308 | 2.42 | 2.53 | 0 | 101 | 356 | 261 | 35.45 | 36.01 | 0 | 10 | 10 |
309 | 2.15 | 2.25 | 0 | 102 | 1 | 251 | 1.17 | 1.22 | 1 | 15 | 8 |
311 | 1.69 | 1.78 | 0 | 113 | 1 | 252 | 1.23 | 1.28 | 1 | 12 | 12 |
312 | 1.49 | 1.58 | 0 | 102 | 4 | 253 | 1.29 | 1.34 | 1 | 3 | 16 |
313 | 1.32 | 1.4 | 0 | 3 | 2 | 254 | 1.35 | 1.4 | 1 | 14 | 4 |
314 | 1.16 | 1.24 | 0 | 4 | 8 | 256 | 1.46 | 1.54 | 1 | 21 | 13 |
316 | 0.91 | 0.96 | 0 | 2 | 1 | 257 | 1.53 | 1.61 | 1 | 23 | 13 |
317 | 0.8 | 0.85 | 0 | 2 | 6 | 258 | 1.6 | 1.68 | 1 | 19 | 12 |
318 | 0.71 | 0.76 | 0 | 3 | 9 | 259 | 1.68 | 1.76 | 1 | 14 | 9 |
319 | 0.63 | 0.67 | 0 | 5 | 4 | 261 | 1.84 | 1.92 | 1 | 12 | 9 |
321 | 0.49 | 0.54 | 0 | 7 | 16 |
References
- Liu, C.; Chang, C.; Chang, Z. Maximum Varma entropy distribution with conditional value at risk constraints. Entropy 2020, 22, 663. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, A.; Pirvu, T.A. Portfolio optimization under correlation constraint. Risks 2020, 8, 15. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Y.; Wang, H.; Huang, M. Formulation of the non-parametric value at risk portfolio selection problem considering symmetry. Symmetry 2020, 12, 1639. [Google Scholar] [CrossRef]
- Black, F.; Scholes, M. The pricing of options and corporate liabilities. J. Political Econ. 1973, 81, 637–654. [Google Scholar] [CrossRef]
- Pennanen, T. Introduction to convex optimization in financial markets. Math. Program. 2012, 134, 157–186. [Google Scholar] [CrossRef]
- Pennanen, T. Optimal investment and contingent claim valuation in illiquid markets. Financ. Stochastics 2014, 18, 733–754. [Google Scholar] [CrossRef]
- Nonsoong, P.; Mekchay, K.; Rujivan, S. An analytical option pricing formula for mean-reverting asset with time-dependent parameter. ANZIAM J. 2021, 63, 178–202. [Google Scholar]
- Chumpong, K.; Tanadkithirun, R.; Tantiwattanapaibul, C. Simple closed-form formulas for conditional moments of inhomogeneous nonlinear drift constant elasticity of variance process. Symmetry 2022, 14, 1345. [Google Scholar] [CrossRef]
- Chumpong, K.; Sumritnorrapong, P. Closed-form formula for the conditional moments of log prices under the inhomogeneous Heston model. Computation 2022, 10, 46. [Google Scholar] [CrossRef]
- Rujivan, S.; Rakwongwan, U. Analytically pricing volatility swaps and volatility options with discrete sampling: Nonlinear payoff volatility derivatives. Commun. Nonlinear Sci. Numer. Simul. 2021, 100, 105849. [Google Scholar] [CrossRef]
- Sutthimat, P.; Mekchay, K. Closed-form formulas for conditional moments of inhomogeneous Pearson diffusion processes. Commun. Nonlinear Sci. Numer. Simul. 2022, 106, 106095. [Google Scholar] [CrossRef]
- Chumpong, K.; Mekchay, K.; Thamrongrat, N. Analytical formulas for pricing discretely-sampled skewness and kurtosis swaps based on Schwartz’s one-factor model. Songklanakarin J. Sci. Technol. 2021, 43, 1–6. [Google Scholar]
- Chumpong, K.; Mekchay, K.; Rujivan, S. A simple closed-form formula for the conditional moments of the Ornstein–Uhlenbeck process. Songklanakarin J. Sci. Technol. 2020, 42, 836–845. [Google Scholar]
- Duangpan, A.; Boonklurb, R.; Chumpong, K.; Sutthimat, P. Analytical formulas for conditional mixed moments of generalized stochastic correlation process. Symmetry 2022, 14, 897. [Google Scholar] [CrossRef]
- Chumpong, K.; Mekchay, K.; Rujivan, S.; Thamrongrat, N. Simple analytical formulas for pricing and hedging moment swaps. Thai J. Math. 2022, 20, 693–713. [Google Scholar]
- Sepp, A. Pricing options on realized variance in the Heston model with jumps in returns and volatility. J. Comput. Financ. 2008, 11, 33–70. [Google Scholar] [CrossRef]
- Boonklurb, R.; Duangpan, A.; Rakwongwan, U.; Sutthimat, P. A novel analytical formula for the discounted moments of the ECIR process and interest rate swaps pricing. Fractal Fract. 2022, 6, 58. [Google Scholar] [CrossRef]
- Nualsri, F.; Mekchay, K. Analytically pricing formula for contingent claim with polynomial payoff under ECIR process. Symmetry 2022, 14, 933. [Google Scholar] [CrossRef]
- Sutthimat, P.; Rujivan, S.; Mekchay, K.; Rakwongwan, U. Analytical formula for conditional expectations of path-dependent product of polynomial and exponential functions of extended Cox–Ingersoll–Ross process. Res. Math. Sci. 2022, 9, 1–17. [Google Scholar] [CrossRef]
- Sutthimat, P.; Mekchay, K.; Rujivan, S. Closed-form formula for conditional moments of generalized nonlinear drift CEV process. Appl. Math. Comput. 2022, 428, 127213. [Google Scholar] [CrossRef]
- Sutthimat, P.; Mekchay, K.; Rujivan, S. Explicit formula for conditional expectations of product of polynomial and exponential function of affine transform of extended Cox–Ingersoll–Ross process. J. Physics: Conf. Ser. 2018, 1132, 012083. [Google Scholar] [CrossRef]
- Monoyios, M. Utility indifference pricing with market incompleteness. In Nonlinear Models in Mathematical Finance: New Research Trends in Option Pricing; Ehrhardt, M., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2008; pp. 67–100. [Google Scholar]
- Musiela, M.; Zariphopoulou, T. An example of indifference prices under exponential preferences. Financ. Stochastics 2004, 8, 229–239. [Google Scholar] [CrossRef]
- Pennanen, T.; Perkkiö, A.P. Convex duality in optimal investment and contingent claim valuation in illiquid markets. Financ. Stochastics 2018, 22, 733–771. [Google Scholar] [CrossRef]
- Breeden, D.T.; Litzenberger, R.H. Prices of state-contingent claims implicit in option prices. J. Bus. 1978, 51, 621–651. [Google Scholar] [CrossRef] [Green Version]
- Madan, D.; Seneta, E. The variance gamma (VG) model for share market. J. Bus. 1990, 63, 511–524. [Google Scholar] [CrossRef]
- Armstrong, J.; Pennanen, T.; Rakwongwan, U. Pricing index options by static hedging under finite liquidity. Int. J. Theor. Appl. Financ. 2018, 21, 1850044. [Google Scholar] [CrossRef]
- Pennanen, T.; Bonatto, L.S. A stochastic oil price model for optimal hedging and risk management. Int. J. Theor. Appl. Financ. 2022, 25, 2250009. [Google Scholar] [CrossRef]
- v Puelz, A. Value-at-risk based portfolio optimization. In Stochastic Optimization: Algorithms and Applications; Springer: Berlin/Heidelberg, Germany, 2001; pp. 279–302. [Google Scholar]
- Gaivoronski, A.A.; Pflug, G. Value-at-risk in portfolio optimization: Properties and computational approach. J. Risk 2005, 7, 1–31. [Google Scholar] [CrossRef]
- Rockafellar, R.T.; Uryasev, S. Optimization of conditional value-at-risk. J. Risk 2000, 2, 21–42. [Google Scholar] [CrossRef]
- Maasar, M.A.; Roman, D.; Date, P. Portfolio optimisation using risky assets with options as derivative insurance. In 5th Student Conference on Operational Research (SCOR 2016); Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik: Wadern, Germany, 2016. [Google Scholar]
- Markowitz, H. Portfolio Selection. J. Financ. 1952, 7, 77–91. [Google Scholar]
- Madan, D.B.; Carr, P.P.; Chang, E.C. The variance gamma process and option pricing. Rev. Financ. 1998, 2, 79–105. [Google Scholar] [CrossRef]
- Marakbi, Z. Mean-Variance Portfolio Optimization: Challenging the Role of Traditional Covariance Estimation. 2016. Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199185 (accessed on 23 March 2017).
- Michaud, R.O. The Markowitz optimization enigma: Is ‘optimized’optimal? Financ. Anal. J. 1989, 45, 31–42. [Google Scholar] [CrossRef]
- Das, S.; Markowitz, H.; Scheid, J.; Statman, M. Portfolios for investors who want to reach theirgoals while staying on the mean–variance efficient frontier. J. Wealth Manag. 2011, 14, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Kosapong, B.; Boonserm, P.; Rakwongwan, U. Options portfolio optimization of exotic options written on Mini S&P500 Index in an illiquid market with Conditional Value-at-Risk (CVaR). Thai J. Math. 2022, 169–183. Available online: http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/6118 (accessed on 31 March 2022).
Bloomberg Ticker | Bid Price | Ask Price | Bid Size | Ask Size |
---|---|---|---|---|
S&P 19/05/2020 C262 Equity | 34.54 | 35.09 | 10 | 10 |
S&P 19/05/2020 P262 Equity | 1.93 | 2.01 | 7 | 26 |
S&P 19/05/2020 C263 Equity | 33.63 | 34.18 | 10 | 10 |
S&P 19/05/2020 P263 Equity | 2.02 | 2.10 | 12 | 5 |
Parameter Estimated | Variance Gamma | Meaning |
---|---|---|
0.000001 | mean rate of return | |
0.2 | volatility | |
T | 0.83333 | time to maturity |
295.42 | current index value | |
0.01 | variance rate of the gamma process | |
0 | mean rate of the variance gamma process |
Mean | Standard Deviation |
---|---|
105,000.00 | 1756.98 |
Standard Deviation | |
---|---|
0.1 | 5214.13 |
0.00001 | 1018.50 |
Claim | Selling Price | Buying Price |
---|---|---|
European call option | 5.6 | 5.6 |
quadratic option | 544.5 | 541.0 |
log-option | 38.8 | 38.5 |
digital option | 513.4 | 462.5 |
butterfly spread option | 68.7 | 54.8 |
sine option | 351.9 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamphram, P.; Sutthimat, P.; Rakwongwan, U. Pricing and Hedging Index Options under Mean-Variance Criteria in Incomplete Markets. Computation 2023, 11, 30. https://doi.org/10.3390/computation11020030
Yamphram P, Sutthimat P, Rakwongwan U. Pricing and Hedging Index Options under Mean-Variance Criteria in Incomplete Markets. Computation. 2023; 11(2):30. https://doi.org/10.3390/computation11020030
Chicago/Turabian StyleYamphram, Pornnapat, Phiraphat Sutthimat, and Udomsak Rakwongwan. 2023. "Pricing and Hedging Index Options under Mean-Variance Criteria in Incomplete Markets" Computation 11, no. 2: 30. https://doi.org/10.3390/computation11020030
APA StyleYamphram, P., Sutthimat, P., & Rakwongwan, U. (2023). Pricing and Hedging Index Options under Mean-Variance Criteria in Incomplete Markets. Computation, 11(2), 30. https://doi.org/10.3390/computation11020030