Prediction of Bubble Size Distributions in Large-Scale Bubble Columns Using a Population Balance Model
<p>The experimental setup.</p> "> Figure 2
<p>Comparison between the population balance model (PBM) results and experimental data: <span class="html-italic">U<sub>G</sub></span> = 0.0037 m/s.</p> "> Figure 3
<p>Comparison between PBM results and experimental data: <span class="html-italic">U<sub>G</sub></span> = 0.0074 m/s.</p> "> Figure 4
<p>Comparison between PBM results and experimental data: <span class="html-italic">U<sub>G</sub></span> = 0.0111 m/s.</p> "> Figure 5
<p>Comparison between PBM results and experimental data: <span class="html-italic">U<sub>G</sub></span> = 0.0149 m/s.</p> "> Figure 6
<p>Comparison between PBM results and experimental data: <span class="html-italic">U<sub>G</sub></span> = 0.0188 m/s.</p> "> Figure 7
<p>Comparison between PBM and experimental data: uniform bubble size distribution (BSD) at the inlet: <span class="html-italic">U<sub>G</sub></span> = 0.0037 m/s.</p> "> Figure 8
<p>Comparison between PBM and experimental data: uniform BSD at the inlet: <span class="html-italic">U<sub>G</sub></span> = 0.0074 m/s.</p> "> Figure 9
<p>Comparison between PBM and experimental data: uniform BSD at the inlet: <span class="html-italic">U<sub>G</sub></span> = 0.0111 m/s.</p> "> Figure 10
<p>Comparison between PBM and experimental data: uniform BSD at the inlet: <span class="html-italic">U<sub>G</sub></span> = 0.0149 m/s.</p> "> Figure 11
<p>Comparison between PBM and experimental data: uniform BSD at the inlet: <span class="html-italic">U<sub>G</sub></span> = 0.0188 m/s.</p> "> Figure 12
<p>Comparison between PBM and experimental data: Martinez constant and real BSD at the inlet: <span class="html-italic">U<sub>G</sub></span> = 0.0033 m/s.</p> "> Figure 13
<p>Comparison between PBM results and experimental data: Martinez constant and uniform BSD at the inlet: <span class="html-italic">U<sub>G</sub></span> = 0.0037 m/s.</p> "> Figure 14
<p>Comparison between PBM results and experimental data: Martinez constant and uniform BSD at the inlet: <span class="html-italic">U<sub>G</sub></span> = 0.0074 m/s.</p> "> Figure 15
<p>Comparison between PBM results and experimental data: Martinez constant and uniform BSD at the inlet: <span class="html-italic">U<sub>G</sub></span> = 0.0111 m/s.</p> "> Figure 16
<p>Comparison between PBM results and experimental data: Martinez constant and uniform BSD at the inlet: <span class="html-italic">U<sub>G</sub></span> = 0.0149 m/s.</p> "> Figure 17
<p>Comparison between PBM results and experimental data: Martinez constant and uniform BSD at the inlet: <span class="html-italic">U<sub>G</sub></span> = 0.0188 m/s.</p> ">
Abstract
:1. Introduction
2. The Experimental Dataset
3. Materials and Methods
3.1. Governing Equations
3.2. Coalescence Rate Modeling
3.2.1. Collision Frequency
- turbulent fluctuations, ϑijT (turbulent fluctuations collision frequency);
- buoyancy, ϑijB (buoyancy collision frequency);
- laminar shear, ϑijL (laminar shear collision frequency).
3.2.2. Collision Efficiency
3.3. Breakup Rate Modeling
3.3.1. Modeling Approaches
3.3.2. Breakup Frequency Modeling
3.3.3. Distribution Function of the Daughter Bubble Size
3.4. Boundary Conditions and Validation Data
4. Sensitivity Analyses on Boundary Conditions and Model Closures
4.1. Model Validation
4.2. Sensitivity Analyses on Boundary Conditions and Model Closures
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Besagni, G.; Inzoli, F. Comprehensive experimental investigation of counter-current bubble column hydrodynamics: Holdup, flow regime transition, bubble size distributions and local flow properties. Chem. Eng. Sci. 2016, 146, 259–290. [Google Scholar] [CrossRef]
- Colella, D.; Vinci, D.; Bagatin, R.; Masi, M.; Bakr, E.A. A study on coalescence and breakage mechanisms in three different bubble columns. Chem. Eng. Sci. 1999, 54, 4767–4777. [Google Scholar] [CrossRef]
- Lehr, F.; Mewes, D. A transport equation for the interfacial area density applied to bubble columns. Chem. Eng. Sci. 2001, 56, 1159–1166. [Google Scholar] [CrossRef]
- Ramkrishna, D.; Mahoney, A.W. Population balance modeling. Promise for the future. Chem. Eng. Sci. 2002, 57, 595–606. [Google Scholar] [CrossRef]
- Wilkinson, P.M.; Spek, A.P.; van Dierendonck, L.L. Design Parameters Estimation for Scale-Up of High-Pressure Bubble Columns. AIChE J. 1992, 38, 544–554. [Google Scholar] [CrossRef]
- Kataoka, I.; Ishii, M. Drift flux model for large diameter pipe and new correlation for pool void fraction. Int. J. Heat Mass Transf. 1987, 30, 1927–1939. [Google Scholar]
- Liao, Y.; Lucas, D. A literature review on mechanisms and models for the coalescence process of fluid particles. Chem. Eng. Sci. 2010, 65, 2851–2864. [Google Scholar] [CrossRef]
- Shimizu, K.; Takada, S.; Minekawa, K.; Kawase, Y. Phenomenological model for bubble column reactors: Prediction of gas hold-ups and volumetric mass transfer coefficients. Chem. Eng. J. 2000, 78, 21–28. [Google Scholar] [CrossRef]
- Prince, M.J.; Blanch, H.W. Bubble coalescence and break-up in air-sparged bubble columns. AIChE J. 1990, 36, 1485–1499. [Google Scholar] [CrossRef]
- Kennard, E.H. Kinetic Theory of Gases, with an Introduction to Statistical Mechanics; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1938. [Google Scholar]
- Hughmark, G. Holdup and mass transfer in bubble columns. Ind. Eng. Chem. Process Des. Dev. 1967, 6, 218–220. [Google Scholar] [CrossRef]
- Narsimhan, G.; Gupta, J.; Ramkrishna, D. A model for transitional breakage probability of droplets in agitated lean liquid-liquid dispersions. Chem. Eng. Sci. 1979, 34, 257–265. [Google Scholar] [CrossRef]
- Shah, Y.; Kelkar, B.G.; Godbole, S.; Deckwer, W.D. Design parameters estimations for bubble column reactors. AIChE J. 1982, 28, 353–379. [Google Scholar] [CrossRef]
- Friedlander, S. Smoke, Dust, and Haze: Fundamentals of Aerosol Behavior; J. W. Sons: New York, NY, USA, 1977. [Google Scholar]
- Lin, T.J.; Reese, J.; Hong, T.; Fan, L.S. Quantitative analysis and computation of two-dimensional bubble columns. AIChE J. 1996, 42, 301–318. [Google Scholar] [CrossRef]
- Coulaloglou, C.; Tavlarides, L. Description of interaction processes in agitated liquid-liquid dispersions. Chem. Eng. Sci. 1977, 32, 1289–1297. [Google Scholar] [CrossRef]
- Chesters, A.; Hofman, G. Bubble coalescence in pure liquids. In Mechanics and Physics of Bubbles in Liquids; Springer: Dordrecht, The Netherlands, 1982; pp. 353–361. [Google Scholar]
- Kirkpatrick, R.; Lockett, M. The influence of approach velocity on bubble coalescence. Chem. Eng. Sci. 1974, 29, 2363–2373. [Google Scholar] [CrossRef]
- Kim, J.W.; Lee, W.K. Coalescence behavior of two bubbles in stagnant liquids. J. Chem. Eng. Jpn. 1987, 20, 448–453. [Google Scholar] [CrossRef]
- Levich, V.G.; Technica, S. Physicochemical Hydrodynamics; Prentice-hall: Englewood: Cliffs, NJ, USA, 1962. [Google Scholar]
- Azbel, D.; Athanasios, I. A mechanism of liquid entrainment. In Handbook of Fluids in Motion; Ann Arbor Science Publishers: Boston, MA, USA, 1983; p. 473. [Google Scholar]
- Lasheras, J.C.; Eastwood, C.; Martınez-Bazán, C.; Montanes, J. A review of statistical models for the break-up of an immiscible fluid immersed into a fully developed turbulent flow. Int. J. Multiph. Flow 2002, 28, 247–278. [Google Scholar] [CrossRef]
- Martinez-Bazan, C.; Montanes, J.; Lasheras, J.C. On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency. J. Fluid Mech. 1999, 401, 157–182. [Google Scholar] [CrossRef]
- Batchelor, G.K. The Theory of Homogeneous Turbulence; Cambridge University Press: Cambridge, UK, 1953. [Google Scholar]
- Liao, Y.; Lucas, D. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chem. Eng. Sci. 2009, 64, 3389–3406. [Google Scholar] [CrossRef]
- Besagni, G.; Brazzale, P.; Fiocca, A.; Inzoli, F. Estimation of bubble size distributions and shapes in two-phase bubble column using image analysis and optical probes. Flow Meas. Instrum. 2016, 52, 190–207. [Google Scholar] [CrossRef]
UG [m/s] | 0.0037 | 0.0074 | 0.0111 | 0.0149 | 0.0188 | 0.0037 |
d23 [mm]—Experimental | 5.44 | 5.51 | 4.87 | 4.5 | 4.87 | 5.44 |
d23 [mm]—Model | 5.17 | 5.87 | 5.81 | 4.74 | 4.56 | 5.17 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Besagni, G.; Inzoli, F. Prediction of Bubble Size Distributions in Large-Scale Bubble Columns Using a Population Balance Model. Computation 2019, 7, 17. https://doi.org/10.3390/computation7010017
Besagni G, Inzoli F. Prediction of Bubble Size Distributions in Large-Scale Bubble Columns Using a Population Balance Model. Computation. 2019; 7(1):17. https://doi.org/10.3390/computation7010017
Chicago/Turabian StyleBesagni, Giorgio, and Fabio Inzoli. 2019. "Prediction of Bubble Size Distributions in Large-Scale Bubble Columns Using a Population Balance Model" Computation 7, no. 1: 17. https://doi.org/10.3390/computation7010017