Unravelling the Potential of Density Functional Theory through Integrated Computational Environments: Recent Applications of the Vienna Ab Initio Simulation Package in the MedeA® Software
<p>Li chemical potentials and volume changes of candidate cathode materials. The shaded area marks the target materials with a much lower volume change than the benchmark LiNi<sub>0.5</sub>Mn<sub>1.5</sub>O<sub>4</sub>.</p> "> Figure 2
<p>Computed cell volume as a function of Li concentration in transition-metal oxides with the spinel structure.</p> "> Figure 3
<p>Computed cell volume as a function of Li concentration in transition-metal oxides with the spinel structure.</p> "> Figure 4
<p>Computed interatomic distances of the compound Li<sub>x</sub>Mn<sub>1.125</sub>Cr<sub>0.5</sub>Mg<sub>0.375</sub>O<sub>4</sub> for increasing Li concentration. Li, Mn, Cr, Mg and O atoms are given in dark blue, violet, cyan, light blue and red, respectively.</p> "> Figure 5
<p>EBSD/SEM images of the surface and cross-section of the tensile-samples. (<b>a</b>–<b>c</b>) Sample type A, (<b>d</b>) sample type A annealed at 1073 K for 5 h, (<b>e</b>–<b>g</b>) sample type B and (<b>h</b>) colour code of the inverse pole figure corresponding to the grain orientations. Reprinted from A. Wimmer, M. Smolka, W. Heinz, T. Detzel, W. Robl, C. Motz, V. Eyert, E. Wimmer, F. Jahnel, R. Treichler and G. Dehm, “Temperature dependent transition of intragranular plastic to intergranular brittle failure in electrodeposited Cu micro-tensile samples,” Mater. Sci. Eng. A 618, 398 (2014), with permission from Elsevier.</p> "> Figure 6
<p>Stress–strain curves of sample types A and B at 293 K, 473 K and 673 K. Note that at 473 K the yield strength, ultimate tensile strength and elongation to fracture are drastically smaller for the (<b>a</b>) fine-grained sample type A compared to (<b>b</b>) samples of type B with their bamboo-like microstructure. The ultimate tensile strength shows a significant decrease with increasing temperature. Both sample types A and B show a significantly smaller slope during loading at 673 K (apparent Young’s modulus) caused by plastic deformation (settlement) of the sample head. Reprinted from A. Wimmer, M. Smolka, W. Heinz, T. Detzel, W. Robl, C. Motz, V. Eyert, E. Wimmer, F. Jahnel, R. Treichler and G. Dehm, “Temperature dependent transition of intragranular plastic to intergranular brittle failure in electrodeposited Cu micro-tensile samples,” Mater. Sci. Eng. A 618, 398 (2014), with permission from Elsevier.</p> "> Figure 7
<p>Model of a Σ5(001) twist grain boundary. The adjacent crystal lattices are indicated in green and black. Note that prior to the rotation (twist) the black lattice points have been found above the centres of the squares formed by the green lattice points. For the rotation shown in the figure some of the black lattice points again coincide with the centres of the squares of the green lattice and the square spanned by these points as indicated in purple comprises five points of the green lattice. Within the coincident site lattice theory [<a href="#B30-computation-06-00063" class="html-bibr">30</a>] a maximum number of coincidences of the original and rotated lattice points lets expect a minimal grain-boundary energy.</p> "> Figure 8
<p>Model of a Cu microstructure with a Cl atom at the centre of the grain (<b>left</b>) and at the grain boundary (<b>right</b>).</p> "> Figure 9
<p>Boron-carbon phase diagram [<a href="#B31-computation-06-00063" class="html-bibr">31</a>,<a href="#B32-computation-06-00063" class="html-bibr">32</a>].</p> "> Figure 10
<p>Structure of B<sub>13</sub>C<sub>2</sub> as proposed by Larson [<a href="#B33-computation-06-00063" class="html-bibr">33</a>] (<b>left</b>) and structure of B<sub>4</sub>C as proposed by Lazzari et al. [<a href="#B35-computation-06-00063" class="html-bibr">35</a>] (<b>right</b>). Boron and carbon atoms are shown in yellow and black, respectively.</p> "> Figure 11
<p>Schematic description of the cluster expansion method.</p> "> Figure 12
<p>Schematic description of the cluster expansion ground-state search.</p> "> Figure 13
<p>Enthalpy of formation (<math display="inline"><semantics> <mrow> <mo>Δ</mo> <msub> <mi mathvariant="normal">H</mi> <mi mathvariant="normal">f</mi> </msub> </mrow> </semantics></math>) as a function of the boron concentration <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="normal">x</mi> <mi mathvariant="normal">B</mi> </msub> </mrow> </semantics></math> of a binary cluster expansion of boron carbide. The solid black line indicates the convex hull with the pure phases based on the boron carbide crystal structure fully occupied by carbon and boron atoms, respectively. The solid red line shows the correct ground-state line connecting the graphite and α-boron. The green squares show the DFT enthalpies of formation of the structures in the training-set, green crosses the CE predicted enthalpies of formation of the training set structures and the grey crosses the CE predicted enthalpies of formation of all the other structures considered by the cluster expansion. Note that the true ground state line results throughout from DFT calculations. The green cross found below the ground state line at x<sub>B</sub> = 0.8667 corresponds to the green square found slightly above on the ground state line; the difference between both enthalpies may be taken as a measure of the accuracy of the CE predictions.</p> "> Figure 14
<p>Phonon dispersion of B<sub>4</sub>C computed using the direct method (finite displacement method) as implemented in MedeA-Phonon. The high-frequency mode at 48 THz corresponds to the bond-stretching vibrational mode of the B atoms in the C-B-C linear rods as indicated by the arrow shown in the inset.</p> "> Figure 15
<p>Computed descriptor related to magnesium binding energies (eV) for a range of experimentally known magnesium compounds. This screening survey highlights different classes of materials containing magnesium, thus providing a quantitative comparison of the chemical bonding between host structure and the magnesium within each system.</p> "> Figure 16
<p>High-temperature rutile structure (<b>left</b>) and low-temperature M<sub>1</sub> structure (<b>right</b>) of VO<sub>2</sub>. Vanadium and oxygen atoms are given in cyan and red, respectively.</p> "> Figure 17
<p>Partial DOS of rutile VO<sub>2</sub> (<b>left</b>) and M<sub>1</sub> VO<sub>2</sub> (<b>right</b>) as calculated using the GGA (<b>top</b>) and the HSE (<b>bottom</b>) functional.</p> ">
Abstract
:1. Introduction
2. Computational Methods
3. Illustrative Cases
3.1. Design of Low-Strain Cathode Materials for Solid-State Li-Ion Batteries
3.2. Embrittlement of Cu Micro-Structures
3.3. Structure and Bonding of Boron Carbide
3.4. High-Throughput Calculations
3.5. Accurate Band Gaps of Transition-Metal Oxides from Hybrid-Functional Calculations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- MedeA®—Materials Exploration and Design Analysis; Materials Design, Inc.: San Diego, CA, USA, 2018.
- Larsen, A.H.; Mortensen, J.J.; Blomqvist, J.; Castelli, I.E.; Christensen, R.; Dułak, M.; Friis, J.; Groves, M.N.; Hammer, B.; Hargus, C. The Atomic Simulation Environment—A Python library for working with atoms. J. Phys. Condens. Matter 2017, 29, 273002. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Saal, J.E.; Kirklin, S.; Aykol, M.; Meredig, B.; Wolverton, C. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD). J. Miner. Met. Mater. Soc. 2013, 65, 1501–1509. [Google Scholar] [CrossRef]
- Kirklin, S.; Saal, J.E.; Meredig, B.; Thompson, A.; Doak, J.W.; Aykol, M.; Rühl, S.; Wolverton, C. The Open Quantum Materials Database (OQMD): Assessing the accuracy of DFT formation energies. Npj Comput. Mater. 2015, 1, 15010. [Google Scholar] [CrossRef]
- Ghiringhelli, L.M.; Carbogno, C.; Levchenko, S.; Mohamed, F.; Huhs, G.; Lüders, M.; Oliveira, M.; Scheffler, M. Towards a Common Format for Computational Material Science Data. arXiv, 2016; arXiv:160704738. [Google Scholar]
- Pizzi, G.; Cepellotti, A.; Sabatini, R.; Marzari, N.; Kozinsky, B. AiiDA: Automated interactive infrastructure and database for computational science. Comp. Mater. Sci. 2016, 111, 218–230. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865, Erratum: Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef] [PubMed]
- Seidl, A.; Görling, A.; Vogl, P.; Majewski, J.A.; Levy, M. Generalized Kohn-Sham schemes and the band-gap problem. Phys. Rev. B 1996, 53, 3764. [Google Scholar] [CrossRef]
- Marsman, M.; Paier, J.; Stroppa, A.; Kresse, G. Hybrid functionals applied to extended systems. J. Phys. Condens. Matter 2008, 20, 064201. [Google Scholar] [CrossRef] [PubMed]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207–8215. [Google Scholar] [CrossRef]
- Ebner, M.; Marone, F.; Stampanoni, M.; Wood, V. Visualization and Quantification of Electrochemical and Mechanical Degradation of Li Ion Batteries. Science 2013, 342, 716–720. [Google Scholar] [CrossRef]
- Ohzuku, T.; Ueda, A.; Yamamoto, N. Zero-Strain Insertion Material of Li[Li1/3Ti5/3]O4 for Rechargeable Lithium Cells. J. Electrochem. Soc. 1995, 142, 1431–1435. [Google Scholar] [CrossRef]
- Kundaraci, M.; Amatucci, G.G. Synthesis and Characterization of Nanostructured 4.7 V LixMn1.5Ni0.5O4 Spinels for High-Power Lithium-Ion Batteries. J. Electrochem. Soc. 2006, 153, A1345–A1352. [Google Scholar] [CrossRef]
- Rosciano, F.; Christensen, M.; Eyert, V.; Mavromaras, A.; Wimmer, E. Reduced Strain Cathode Materials for Solid State Lithium Ion Batteries. International Patent WO 2014191018, 4 December 2014. [Google Scholar]
- Rosciano, F.; Christensen, M.; Eyert, V.; Mavromaras, A.; Wimmer, E. Computational Design and Experimental Verification of Zero- and Low-Strain Cathode Materials for Solid-State Li-Ion Batteries; International Battery Association: Brisbane, Australia, 2014. [Google Scholar]
- Vegard, L.Z. Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z. Phys. 1921, 5, 17–26. [Google Scholar] [CrossRef]
- Ariyoshi, K.; Yamato, R.; Ohzuku, T. Zero-strain insertion mechanism of Li[Li1/3Ti5/3]O4 for advanced lithium-ion (shuttlecock) batteries. Electrochim. Acta 2005, 51, 1125–1129. [Google Scholar] [CrossRef]
- Hall, E.O. The Deformation and Ageing of Mild Steel: III Discussion of Results. Proc. Phys. Soc. Sec. B 1951, 64, 747. [Google Scholar] [CrossRef]
- Petch, N.J. The Cleavage Strength of Polycrystals. J. Iron Steel Inst. 1953, 174, 25–28. [Google Scholar]
- Wimmer, A.; Smolka, M.; Heinz, W.; Detzel, T.; Robl, W.; Motz, C.; Eyert, V.; Wimmer, E.; Jahnel, F.; Treichler, R.; et al. Temperature dependent transition of intragranular plastic to intergranular brittle failure in electrodeposited Cu micro-tensile samples. Mater. Sci. Eng. A 2014, 618, 398–405. [Google Scholar] [CrossRef]
- Kronberg, M.L.; Wilson, F.H. Secondary recrystallization in copper. JOM 1949, 185, 501–514. [Google Scholar] [CrossRef]
- Villars, P.; Cenzual, K.; Daams, J.L.C.; Hulliger, F.; Massalski, T.B.; Okamoto, H.; Osaki, K.; Prince, A.; Iwata, S. (Eds.) PAULING FILE, Binaries Edition; ASM International: Geauga County, OH, USA, 2002. [Google Scholar]
- Villars, P.; Berndt, M.; Brandenburg, K.; Cenzual, K.; Daams, J.; Hulliger, F.; Massalski, T.; Okamoto, H.; Osaki, K.; Prince, A.; et al. The PAULING FILE, Binaries Edition. J. Alloys Compd. 2004, 367, 293–297. [Google Scholar] [CrossRef]
- Larson, A.C. Comments concerning the crystal structure of B4C. AIP Conf. Proc. 1986, 140, 109–113. [Google Scholar]
- Clark, H.K.; Hoard, J.L. The Crystal Structure of Boron Carbide. J. Am. Chem. Soc. 1943, 65, 2115–2119. [Google Scholar] [CrossRef]
- Lazzari, R.; Vast, N.; Besson, J.M.; Baroni, S.; Dal Corso, A. Atomic Structure and Vibrational Properties of Icosahedral B4C Boron Carbide. Phys. Rev. Lett. 1999, 83, 3230. [Google Scholar] [CrossRef]
- Mauri, F.; Vast, N.; Pickard, C.J. Atomic Structure of Icosahedral B4C Boron Carbide from a First Principles Analysis of NMR Spectra. Phys. Rev. Lett. 2001, 87, 085506. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, J.M.; Ducastelle, F.; Gratias, D. Generalized Cluster Description of Multicomponent Systems. Phys. A Stat. Mech. Its Appl. 1984, 128, 334–350. [Google Scholar] [CrossRef]
- Lerch, D.; Wieckhorst, O.; Hart, G.L.; Forcade, R.W.; Müller, S. UNCLE: A code for constructing cluster expansions for arbitrary lattices with minimal user-input. Model. Simul. Mater. Sci. Eng. 2009, 17, 055003. [Google Scholar] [CrossRef]
- Le Page, Y.; Saxe, P. Symmetry-general least- squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B 2002, 65, 104104. [Google Scholar] [CrossRef]
- Morin, F.J. Oxides which show a Metal-to-Insulator Transition at the Neel Temperature. Phys. Rev. Lett. 1959, 3, 34. [Google Scholar] [CrossRef]
- Eyert, V. The metal-insulator transitions of VO2: A band theoretical approach. Ann. Phys. 2002, 11, 650–704. [Google Scholar] [CrossRef]
- Goodenough, J.B. Direct Cation-Cation Interactions in Several Oxides. Phys. Rev. 1960, 117, 1442. [Google Scholar] [CrossRef]
- Goodenough, J.B. The two components in the crystallographic transition in VO2. J. Solid State Chem. 1971, 3, 490–500. [Google Scholar] [CrossRef]
- Zylbersztejn, A.; Mott, N.F. Metal-insulator transition in vanadium dioxide. Phys. Rev. B 1975, 11, 4383. [Google Scholar] [CrossRef]
- Wentzcovitch, R.M.; Schulz, W.W.; Allen, P.B. VO2: Peierls or Mott-Hubbard? A view from band theory. Phys. Rev. Lett. 1994, 72, 3389. [Google Scholar] [CrossRef]
- Rice, T.M.; Launois, H.; Pouget, J.P. Comment on “VO2: Peierls or Mott-Hubbard? A view from band theory”. Phys. Rev. Lett. 1994, 73, 3042. [Google Scholar] [CrossRef] [PubMed]
- Wentzcovitch, R.M.; Schulz, W.W.; Allen, P.B. Wentzcovitch et al. reply. Phys. Rev. Lett. 1994, 73, 3043. [Google Scholar] [CrossRef]
- Eyert, V. VO2: A Novel View from Band Theory. Phys. Rev. Lett. 2001, 107, 016401. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Lee, S.; Yang, S.; Delaire, O.; Wu, J. Recent progresses on physics and applications of vanadium dioxide. Mater. Today 2018, 21, 875–896. [Google Scholar] [CrossRef]
ΔEseg [kJ/mol] | ||
---|---|---|
Cl | S | |
GB segregation, Σ5 (001) | −69.9 | −54.3 |
Surface segregation, (001) | −321.5 | −145.3 |
GB segregation, Σ7 (111) | −53.5 | −56.3 |
Surface segregation, (111) | −272.0 | −129.9 |
cimp [1/nm2] | Esep [J/m2] | |||
---|---|---|---|---|
Pure Cu | Cl | S | ||
Σ5 (001) | 0.77 | 1.08 | 0.82 | 1.01 |
Σ7 (111) | 0.62 | 1.13 | 0.89 | 1.04 |
B4C | B5C | B13C2 | B9C | |
---|---|---|---|---|
Bulk modulus [GPa} | 270.16 | 261.43 | 253.31 | 239.35 |
Young’s modulus [GPa] | 487.94 | 436.45 | 405.86 | 383.36 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eyert, V.; Christensen, M.; Wolf, W.; Reith, D.; Mavromaras, A.; Freeman, C.; Wimmer, E. Unravelling the Potential of Density Functional Theory through Integrated Computational Environments: Recent Applications of the Vienna Ab Initio Simulation Package in the MedeA® Software. Computation 2018, 6, 63. https://doi.org/10.3390/computation6040063
Eyert V, Christensen M, Wolf W, Reith D, Mavromaras A, Freeman C, Wimmer E. Unravelling the Potential of Density Functional Theory through Integrated Computational Environments: Recent Applications of the Vienna Ab Initio Simulation Package in the MedeA® Software. Computation. 2018; 6(4):63. https://doi.org/10.3390/computation6040063
Chicago/Turabian StyleEyert, Volker, Mikael Christensen, Walter Wolf, David Reith, Alexander Mavromaras, Clive Freeman, and Erich Wimmer. 2018. "Unravelling the Potential of Density Functional Theory through Integrated Computational Environments: Recent Applications of the Vienna Ab Initio Simulation Package in the MedeA® Software" Computation 6, no. 4: 63. https://doi.org/10.3390/computation6040063