Influence of Solar Radiation on Microbiological Degradation of Sewage Submarine Outfalls and the Safety of Bathing Areas
<p>Study area and location of the outfalls.</p> "> Figure 2
<p>Characteristics of the plume.</p> "> Figure 3
<p>Income solar radiation along the plume over the water column.</p> "> Figure 4
<p><span class="html-italic">T</span><sub>90</sub> values over the day for different weather and seasonal conditions.</p> "> Figure 5
<p>Average <span class="html-italic">T</span><sub>90</sub> daytime (9 to15 h) values for all scenarios.</p> "> Figure 6
<p>Concentration of coliforms in summer—currents flowing to the west. The upper pattern indicates the clear sky condition, and the lower pattern corresponds to an overcast sky. The intensity of incident solar radiation corresponds to 13:00.</p> "> Figure 7
<p>The concentration of coliforms in clear skies—currents flowing to the west. The upper print indicates the summer condition, and the lower print corresponds to winter. The intensity of incident solar radiation corresponds to 13:00 of the day.</p> "> Figure 8
<p>The concentration of coliforms in summer—currents flowing to the east. The upper pattern indicates the clear sky condition, and the lower pattern corresponds to an overcast sky. The intensity of incident solar radiation corresponds to 13:00.</p> "> Figure 9
<p>The concentration of coliforms in clear skies—currents flowing to the east. The upper print indicates the summer condition, and the lower print corresponds to winter. The intensity of incident solar radiation corresponds to 13:00 of the day.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Outfall Characteristics
2.2. Mixing Processes of Sewage in the Marine Environment
- Advection generated by the ocean currents responsible for the effluent transport.
- Turbulent diffusion of the effluent. This ambient turbulence is generated by internal frictional stresses in the water mass, frictional stresses of the water body with the bottom, and wind friction on the free surface. In general, the transport of sewage plumes is dominated by advection, but turbulent diffusion exerts significant importance.
- Kinetics of bacterial decay of coliforms as indicators of fecal contamination, considering first-order reactions. The bacterial decay in the marine environment varies according to variations in temperature, salinity and solar radiation.
2.3. Bacterial Decay
2.4. Modeling Procedure
3. Results
3.1. Bacterial Decay Rates
3.2. Coliform Concentration Plumes
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Searcy, R.T.; Boehm, A.B. A Day at the Beach: Enabling Coastal Water Quality Prediction with High-Frequency Sampling and Data-Driven Models. Environ. Sci. Technol. 2021, 55, 1908–1918. [Google Scholar] [CrossRef] [PubMed]
- Heckwolf, M.J.; Peterson, A.; Jänes, H.; Horne, P.; Künne, J.; Liversage, K.; Sajeva, M.; Reusch, T.B.; Kotta, J. From ecosystems to socio-economic benefits: A systematic review of coastal ecosystem services in the Baltic Sea. Sci. Total Environ. 2021, 755, 142565. [Google Scholar] [CrossRef] [PubMed]
- Farkas, K.; Mannion, F.; Sorby, R.; Winterbourn, B.; Allender, S.; Gregory, C.G.; Holding, P.; Thorpe, J.M.; Malham, S.K.; Le Vay, L. Assessment of wastewater derived pollution using viral monitoring in two estuaries. Mar. Pollut. Bull. 2024, 200, 116081. [Google Scholar] [CrossRef]
- Gonçalves, F.B.; De Souza, A.P. Disposição Oceânica de Esgotos Sanitários: História, Teoria e Prática. ABES, Ed.; Brazilian Association of Sanitation Engineer: Rio de Janeiro, Brazil, 1997. [Google Scholar]
- Tate, P.M.; Holden, C.J.; Tate, D.J. Influence of plume advection and particle settling on wastewater dispersion and distribution. Mar. Pollut. Bull. 2019, 145, 678–690. [Google Scholar] [CrossRef] [PubMed]
- Besley, C.H.; Birch, G.F. Deepwater ocean outfalls: A sustainable solution for sewage discharge for mega-coastal cities (Sydney, Australia): A synthesis. Mar. Pollut. Bull. 2019, 145, 707–723. [Google Scholar] [CrossRef] [PubMed]
- Akdemir, T.; Dalgic, G. The impact of the marine sewage outfalls on the sediment quality: The Black Sea and the Marmara case. Saudi J. Biol. Sci. 2020, 28, 238–246. [Google Scholar] [CrossRef]
- Birocchi, P.; Dottori, M.; de Godoi Rezende Costa, C.; Leite, J.R.B. Study of three domestic sewage submarine outfall plumes through the use of numerical modeling in the São Sebastião channel, São Paulo state, Brazil. Reg. Stud. Mar. Sci. 2021, 42, 101647. [Google Scholar] [CrossRef]
- WHO. Health-Based Monitoring of Recreational Waters: The Feasibility of a New Approach (The ‘Annapolis Protocol’); WHO: Geneva, Switzerland, 1999. [Google Scholar]
- Fujioka, R.S.; Hashimoto, H.H.; Siwak, E.B.; Young, R.H.F. Effect of sunlight on survival of indicator bacteria in seawater. Appl. Environ. Microbiol. 1981, 41, 690–696. [Google Scholar] [CrossRef]
- Mancini, J.L. Numerical estimates of coliform mortality rates under various conditions. J. Water Pollut. Control. Fed. 1978, 50, 2477–2484. [Google Scholar]
- Chamberlin, C.E. A decay model for enteric bacteria in natural waters. Water Pollut. Microbiol. 1978, 2, 325–548. [Google Scholar]
- Guillaud, J.F.; Derrien, A.; Gourmelon, M.; Pommepuy, M. T90 as a tool for engineers: Interest and limits. Water Sci. Technol. 1997, 35, 277–281. [Google Scholar] [CrossRef]
- Sarikaya, H.Z.; Saatçi, A.M. Bacterial die-away rates in Red Sea waters. Water Sci. Technol. 1995, 32, 45–52. [Google Scholar] [CrossRef]
- Šolić, M.; Krstulović, N. Separate and combined effects of solar radiation, temperature, salinity, and pH on the survival of faecal coliforms in seawater. Mar. Pollut. Bull. 1992, 24, 411–416. [Google Scholar] [CrossRef]
- Suttle, C.A.; Chen, F. Mechanisms and rates of decay of marine viruses in seawater. Appl. Environ. Microbiol. 1992, 58, 3721–3729. [Google Scholar] [CrossRef]
- Kashefipour, S.M.; Lin, B.; Falconer, R.A. Modelling the fate of faecal indicators in a coastal basin. Water Res. 2006, 40, 1413–1425. [Google Scholar] [CrossRef]
- Carneiro, M.T.; Cortes, M.B.V.; Wasserman, J.C. Critical evaluation of the factors affecting Escherichia coli environmental decay for outfall plume models. Rev. Ambiente Agua 2018, 13, e2106. [Google Scholar] [CrossRef]
- Chan, Y.M.; Thoe, W.; Lee, J.H.W. Field and laboratory studies of Escherichia coli decay rate in subtropical coastal water. J. Hydro-Environ. Res. 2015, 9, 1–14. [Google Scholar] [CrossRef]
- CONAMA. Resolution 274; Conselho Nacional do Meio Ambiente: Brasilia, Brazil, 2000.
- Roberts, P.J.W. Dilution and transport predictions for ocean outfalls. Water Sci. Technol. 1989, 21, 1606. [Google Scholar] [CrossRef]
- Carvalho, J.L.B.; Roberts, P.J.W.; Roldao, J. Field observations of Ipanema beach outfall. J. Hydraul. Eng. 2002, 128, 151–160. [Google Scholar] [CrossRef]
- Rosman, P.C.C. Referência Técnica do SisBaHiA—Sistema Base de Hidrodinâmica Ambiental; Fundação COPPETEC—COPPE/UFRJ: Rio de Janeiro, RJ, Brazil, 2024. [Google Scholar]
- Schaffel, R.; Paranhos, R.; Carvalho, P.; Pereira, M.; Matos, F.; Mendonça-Hagler, L.C.; Mayer, L.; Hagler, A.N. Contagens de coliformes fecais em águas de superfície nas proximidades do emissário submarino de Ipanema, Rio de Janeiro, RJ. In Proceedings of the III Encontro Nacional de Microbiologia Ambiental, São Paulo, Brazil, 3–6 December 1990. [Google Scholar]
- Pedrosa de Macena, L.d.G.; Castiglia Feitosa, R.; Couto da Silva, J.; Ferreira, F.C.; Maranhão, A.G.; Brandão, M.L.L.; Caldeira, N.G.S.; Couto, J.S.; Coelho de Azevedo, M.G.; Barbosa de Paula, B.; et al. Environmental assessment of sewage contamination in the surroundings of a marine outfall combining human mastadenovirus and faecal indicator bacteria. Mar Pollut Bull. 2023, 193, 115110. [Google Scholar] [CrossRef]
- Sydney Waters. Sydney’s Deep-Water Ocean Outfalls Long-Term Environmental Performance; Sydney Water: Sydney, Australia, 2007.
- Feitosa, R.C.; Rosman, P.C.C.; Bleninger, T.; Wasserman, J.C. Coupling bacterial decay and hydrodynamic models for sewage outfall simulation. J. Appl. Water Eng. Res. 2013, 1, 137–147. [Google Scholar] [CrossRef]
- Roberts, P.J.W.; Snyder, W.H.; Baumgartner, D.J. Ocean Outfalls. I: Submerged Wastefield Formation. J. Hydraul. Eng. 1989, 115. [Google Scholar] [CrossRef]
- Roberts, P.J.W.; Snyder, W.H.; Baumgartner, D.J. Ocean Outfalls. II: Spatial Evolution of Submerged Wastefield. J. Hydraul. Eng. 1989, 115, 26–48. [Google Scholar] [CrossRef]
- Roberts, P.J.W.; Snyder, W.H.; Baumgartner, D.J. Ocean Outfalls. III: Effect of Diffuser Design on Submerged Wastefield. J. Hydraul. Eng. 1989, 115, 49–70. [Google Scholar] [CrossRef]
- Feitosa, R.C.; Rosman, P.C. Emissários Submarinos de Esgotos: Aspectos de Qualidade de Água e Modelagem Computacional. In Silva RCV, Organizador Métodos Numéricos em Recursos Hídricos VIII Porto Alegre; ABRH: Porto Alegre, Brazil, 2008; pp. 1–170. [Google Scholar]
- Feitosa, R.C.; Rosman, P.C.C.; Carvalho, J.L.B.; Côrtes, M.B.V.; Wasserman, J.C. Comparative study of faecal bacterial decay models for the simulation of plumes of submarine sewage outfalls. Water Sci. Technol. 2013, 68, 622–631. [Google Scholar] [CrossRef]
- McCambridge, J.; McMeekin, T.A. Effect of solar radiation and predacious microorganisms on survival of fecal and other bacteria. Appl. Environ. Microbiol. 1981, 41, 1083–1087. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martin, J.L.; McCutcheon, S.C.; Schottman, R.W. Hydrodynamics and Transport for Water Quality Modeling; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Bellair, J.T.; Parr-Smith, G.A.; Wallis, I.G. Significance of diurnal variations in faecal coliform die-off rates in the design of ocean outfalls. J. Water Pollut. Control. Fed. 1977, 49, 2022–2030. [Google Scholar]
- Canteras, J.C.; Juanes, J.A.; Pérez, L.; Koev, K.N. Modelling the coliforms inactivation rates in the Cantabrian Sea (Bay of Biscay) from in situ and laboratory determinations of T90. Water Sci. Technol. 1995, 32, 37–44. [Google Scholar] [CrossRef]
- Yang, L.; Chang, W.S.; Lo Huang, M.N. Natural disinfection of wastewater in marine outfall fields. Water Res. 1999, 34, 743–750. [Google Scholar] [CrossRef]
- Vieira, C.B.; Mendes, A.C.d.O.; de Oliveira, J.M.; Gaspar, A.M.C.; Leite, J.P.G.; Miagostovich, M.P. Vírus entéricos na lagoa Rodrigo de freitas. Oecologia Aust. 2012, 16, 540–565. [Google Scholar] [CrossRef]
- Carducci, A.; Battistini, R.; Rovini, E.; Verani, M. Viral removal by wastewater treatment: Monitoring of indicators and pathogens. Food Environ. Virol. 2009, 1, 85–91. [Google Scholar] [CrossRef]
- McKee, A.M.; Cruz, M.A. Microbial and Viral Indicators of Pathogens and Human Health Risks from Recreational Exposure to Waters Impaired by Fecal Contamination. J. Sustain. Water Built. Environ. 2021, 7, 03121001. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castiglia Feitosa, R.; Colonna Rosman, P.C. Influence of Solar Radiation on Microbiological Degradation of Sewage Submarine Outfalls and the Safety of Bathing Areas. Coasts 2024, 4, 638-650. https://doi.org/10.3390/coasts4040033
Castiglia Feitosa R, Colonna Rosman PC. Influence of Solar Radiation on Microbiological Degradation of Sewage Submarine Outfalls and the Safety of Bathing Areas. Coasts. 2024; 4(4):638-650. https://doi.org/10.3390/coasts4040033
Chicago/Turabian StyleCastiglia Feitosa, Renato, and Paulo Cesar Colonna Rosman. 2024. "Influence of Solar Radiation on Microbiological Degradation of Sewage Submarine Outfalls and the Safety of Bathing Areas" Coasts 4, no. 4: 638-650. https://doi.org/10.3390/coasts4040033
APA StyleCastiglia Feitosa, R., & Colonna Rosman, P. C. (2024). Influence of Solar Radiation on Microbiological Degradation of Sewage Submarine Outfalls and the Safety of Bathing Areas. Coasts, 4(4), 638-650. https://doi.org/10.3390/coasts4040033