Design of Intelligent Monitoring System in Galloping Power Transmission Line
<p>Structural block diagram and physical drawing of the on-line monitoring system. (<b>a</b>) Structural block diagram of the on-line monitoring system; (<b>b</b>) Physical map of the on-line monitoring system.</p> "> Figure 2
<p>Structure block diagram and physical drawing of the power management system. (<b>a</b>) Block diagram of power management system structure; (<b>b</b>) Physical map of the power management system.</p> "> Figure 3
<p>Installation mode of original monitoring system. (<b>a</b>) The monitoring terminal is installed on the wire [<a href="#B12-sensors-22-04197" class="html-bibr">12</a>]; (<b>b</b>) The sensor is mounted on the wire [<a href="#B20-sensors-22-04197" class="html-bibr">20</a>].</p> "> Figure 4
<p>3D structure diagram of improved spacer.</p> "> Figure 5
<p>A cloud map showing the improved spacer bar’s galloping displacement.</p> "> Figure 6
<p>The initial galloping displacement cloud map of the original spacer bar.</p> "> Figure 7
<p>Schematic diagram of the design of the galloping attitude calculation algorithm.</p> "> Figure 8
<p>Algorithm Design Flowchart.</p> "> Figure 9
<p>Mahony complementary filter schematic.</p> "> Figure 10
<p>Data curve before and after least-squares method. (<b>a</b>) Unprocessed speed curve; (<b>b</b>) Displacement curve obtained without processing; (<b>c</b>) After processing, the speed curve is obtained; (<b>d</b>) Displacement curve obtained after processing.</p> "> Figure 11
<p>Data curve before and after smoothing filtering. (<b>a</b>) Data curves are not processed with smoothing filtering; (<b>b</b>) Smooth filter processing data curve.</p> "> Figure 12
<p>Different integration techniques’ data curves. (<b>a</b>) Double Integral Curve in Time Domain; (<b>b</b>) Time-frequency domain hybrid integration curve.</p> "> Figure 13
<p>Conductor galloping experimental equipment.</p> "> Figure 14
<p><span class="html-italic">x</span>-axis and <span class="html-italic">y</span>-axis acceleration data curve.</p> "> Figure 15
<p>Algorithm curves of different gallop amplitudes.</p> "> Figure 16
<p>Galloping amplitude curve (<b>a</b>) <span class="html-italic">x</span>-axis displacement (<b>b</b>) <span class="html-italic">y</span>-axis displacement.</p> "> Figure 17
<p>Wire galloping space trajectory diagram.</p> "> Figure 18
<p><span class="html-italic">x</span>-axis and <span class="html-italic">y</span>-axis deviation graph curves.</p> ">
Abstract
:1. Introduction
2. Design Method of Galloping Amplitude Monitoring System
2.1. Principle of Galloping Amplitude Monitoring System
2.2. Galloping Monitoring Terminal Design
2.3. Design of Power Management System
2.4. Installation Method of Galloping Monitoring System Terminal
2.4.1. Terminal Installation Design
2.4.2. Analysis of Influence of Monitoring Terminal on Conductor Galloping
3. Algorithm Design for Galloping Amplitude
3.1. Algorithm Design for Galloping Attitude
3.2. Kalman Filter and Mahony Complementary Filter Are Fused
3.2.1. Kalman Filter Algorithm Design
3.2.2. Mahony Complementary Filtering Algorithm Design
3.2.3. Algorithm Design of Filtering out Gravitational Acceleration Component
3.3. Acceleration Data Preprocessing
3.3.1. Least Squares Detrend Term
3.3.2. Design of Adaptive Smoothing Filtering Algorithm
3.4. Galloping Amplitude Algorithm
4. Analysis of the Wire Galloping Experiment
4.1. Wire Galloping Experiment Setup
4.2. Comparison of Experimental Results
4.2.1. Acceleration Data Acquisition
4.2.2. Galloping Algorithm Comparison
4.3. Validation of Experimental Results
4.3.1. Gallop Amplitude Monitoring
4.3.2. Galloping Track Restoration
4.3.3. The Galloping Amplitude Residual Curve
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barcellona, S.; Piegari, L. Effect of current on cycle aging of lithium ion batteries. J. Energy Storage 2020, 29, 101310. [Google Scholar] [CrossRef]
- Patrizi, N.; LaTouf, S.K.; Tsiropoulou, E.E.; Papavassiliou, S. Prosumer-Centric Self-Sustained Smart Grid Systems. IEEE Syst. J. 2022; epub of ahead. [Google Scholar] [CrossRef]
- Nigol, O.; Buchan, P. Conductor galloping part I-Den Hartog mechanism. IEEE Trans. Power Appar. Syst. 1981, 2, 699–707. [Google Scholar] [CrossRef]
- Quan, Y.S.; Zhou, E.; Chen, G.; Zhao, X. New Methodology of On-Line Monitoring for Transmission Line Galloping. Adv. Mater. Res. 2013, 805, 867–870. [Google Scholar]
- Huang, X.; Huang, G.; Zhang, Y. Designation of an on-line monitoring system of transmission line’s galloping. In Proceedings of the 2009 9th International Conference on Electronic Measurement & Instruments, Beijing, China, 16–19 August 2009; pp. 655–659. [Google Scholar]
- Zhao, S.P.; Zhao, S.X.; Zhang, Y.P.; Wang, Y.H. Design and Data Processing of Galloping Online Monitoring System for Positive Feeder of High-Speed Railway Catenary in Gale Area. IEEJ Trans. Electr. Electron. Eng. 2021, 16, 1248–1259. [Google Scholar] [CrossRef]
- Rui, X.; Huang, H.; Zhang, S.; Teng, W. On-line monitoring system on power transmission line galloping based on fiber grating sensors. In Proceedings of the 30th Chinese Control Conference, Yantai, China, 22–24 July 2011; pp. 4327–4330. [Google Scholar]
- Bjerkan, L. Application of fiber-optic Bragg grating sensors in monitoring environmental loads of overhead power transmission lines. Appl. Opt. 2000, 39, 554–560. [Google Scholar] [CrossRef]
- Mahajan, S.M.; Singareddy, U.M. A real-time conductor sag measurement system using a differential GPS. IEEE Trans. Power Deliv. 2012, 27, 475–480. [Google Scholar] [CrossRef]
- Yang, W.; Shao, Y.; Lv, Z.; Yang, X.; Li, Q.; Xie, K.; Wei, J.; Zhang, B. Study on monitoring for power transmission line galloping based on monocular vision method. In Proceedings of the 2014 International Conference on Power System Technology, Chengdu, China, 20–22 October 2014; pp. 1571–1575. [Google Scholar]
- Li, W.H.; Tajbakhsh, A.; Rathbone, C.; Vashishtha, Y. Image processing to automate condition assessment of overhead line components. In Proceedings of the 2010 1st International Conference on Applied Robotics for the Power Industry, Montreal, QC, Canada, 5–7 October 2010; pp. 1–6. [Google Scholar]
- Huang, X.B.; Zhao, L.; Chen, G.M. Design of a Wireless Sensor Module for Monitoring Conductor Galloping of Transmission Lines. Sensors 2016, 16, 1657. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Chang, J.; Qu, B.; Zhao, Q. Denoising and trend terms elimination algorithm of accelerometer signals. Math. Probl. Eng. 2016, 2016, 2759092. [Google Scholar] [CrossRef]
- Zhang, A.B.; Chen, T.Y.; Liu, X.X.; Zhang, Y.J.; Yang, Y.T. Monitoring data filter and deformation information extraction based on wavelet filter and empirical mode decomposition. Appl. Mech. Mater. 2015, 742, 261–271. [Google Scholar]
- Li, Z.; Fang, H.; Ke, X.; Li, F.; Wang, Y. Application of sliding average method to MEMS gyroscope signal trend extraction. J. Electron. Meas. Instrum. 2019, 7, 43–49. [Google Scholar]
- Cheng, X.; Zhou, T.; Sun, K. Time/frequency-domain integration method of vibration acceleration signal processed by wavelet denoising. Power Energy 2019, 6, 633–637. [Google Scholar]
- Chen, Y.; Li, M.; Chen, P.P.; Xia, S.X. Survey of cross-technology communication for IoT heterogeneous devices. IET Commun. 2019, 13, 1709–1720. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, W.; Yu, M.; Zhang, F.; Chen, J. Design of monitoring system for redundant communication power supply based on ZigBee. J. Phys. Conf. Ser. 2021, 2021, 012046. [Google Scholar] [CrossRef]
- Huang, X.; Zhao, L.; Zhou, K.; Lou, B.; Li, M.; Zhang, Y. Conductor galloping monitoring system based on inertial sensor for transmission lines. High Volt. Eng. 2014, 40, 1312–1319. [Google Scholar]
- Zhao, G.; Lu, Z.; Wang, X.; Peng, Y.; Chang, S. Full Scale Experiment for Vibration Analysis of Ice-Coated Bundled-Conductor Transmission Lines. KSCE J. Civ. Eng. 2022, 26, 336–352. [Google Scholar] [CrossRef]
- Keyhan, H.; McClure, G.; Habashi, W.G. Dynamic analysis of an overhead transmission line subject to gusty wind loading predicted by wind-conductor interaction. Comput. Struct. 2013, 122, 135–144. [Google Scholar] [CrossRef]
- Keutgen, R.; Lilien, J.-L. Benchmark cases for galloping with results obtained from wind tunnel facilities validation of a finite element model. IEEE Trans. Power Deliv. 2000, 15, 367–374. [Google Scholar] [CrossRef] [Green Version]
- Lou, W.J.; Lv, J.; Huang, M.F.; Yang, L.; Yan, D. Aerodynamic force characteristics and galloping analysis of iced bundled conductors. Wind Struct. 2014, 18, 135–154. [Google Scholar] [CrossRef]
- Lu, J.Z.; Wang, Q.; Wang, L.M.; Mei, H.W.; Yang, L.; Xu, X.J.; Li, L. Study on wind tunnel test and galloping of iced quad bundle conductor. Cold Reg. Sci. Tech. 2019, 160, 273–287. [Google Scholar] [CrossRef]
- Liu, J.; Yan, B.; Mou, Z.; Gao, Y.; Niu, G.; Li, X. Numerical study of aeolian vibration characteristics and fatigue life estimation of transmission conductors. PLoS ONE 2022, 17, e0263163. [Google Scholar] [CrossRef] [PubMed]
- Nigol, O.; Buchan, P. Conductor galloping-Part II torsional mechanism. IEEE Trans. Power Appar. Syst. 1981, 2, 708–720. [Google Scholar] [CrossRef]
- Huang, G.Z.; Yan, B.; Liu, J.Q.; Wu, C.A.; Lv, Z.B. Experimental Study on Torsional Behavior of Twin Bundle Conductor Lines. IEEE Trans. Power Deliv. 2020, 35, 1423–1431. [Google Scholar] [CrossRef]
- Liu, M.; Cai, Y.L.; Zhang, L.H.; Wang, Y.Q. Attitude Estimation Algorithm of Portable Mobile Robot Based on Complementary Filter. Micromachines 2021, 12, 1373. [Google Scholar] [CrossRef]
- Phan, M.Q.; Vicario, F.; Longman, R.W.; Betti, R. State-Space Model and Kalman Filter Gain Identification by a Kalman Filter of a Kalman Filter. J. Dyn. Syst. Meas. Control-Trans. ASME 2018, 140, 9. [Google Scholar] [CrossRef]
- Liu, H.; Hu, F.; Su, J.S.; Wei, X.W.; Qin, R.S. Comparisons on Kalman-Filter-Based Dynamic State Estimation Algorithms of Power Systems. IEEE Access 2020, 8, 51035–51043. [Google Scholar] [CrossRef]
- Gui, H.C.; de Ruiter, A.H.J. Quaternion Invariant Extended Kalman Filtering for Spacecraft Attitude Estimation. J. Guid. Control Dyn. 2018, 41, 863–878. [Google Scholar] [CrossRef]
- Wang, G.; Xue, R. Quaternion Filtering Based on Quaternion Involutions and its Application in Signal Processing. IEEE Access 2019, 7, 149068–149079. [Google Scholar] [CrossRef]
- Bai, F.; Liu, Y.; Liu, Y.; Sun, K.; Bhatt, N.; Del Rosso, A.; Farantatos, E.; Wang, X. Measurement-based correlation approach for power system dynamic response estimation. IET Gener. Transm. Distrib. 2015, 9, 1474–1484. [Google Scholar] [CrossRef] [Green Version]
Rotation Angle | EKF x-axis (°) | QUAT x-axis (°) | EKF y-axis (°) | QUAT y-axis (°) | EKF z-axis (°) | QUAT z-axis (°) |
---|---|---|---|---|---|---|
0.2 | 0.3 | 0.16 | 0.36 | 0.45 | 0.56 | |
30.1 | 29.7 | 29.75 | 30.37 | 30.3 | 29.63 | |
59.81 | 60.32 | 59.9 | 60.25 | 60.62 | 59.26 | |
89.9 | 90.21 | 89.83 | 90.33 | 90.86 | 89.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Li, H.; Lu, X.; Li, X.; Zhang, J.; Wang, X.; Chen, C. Design of Intelligent Monitoring System in Galloping Power Transmission Line. Sensors 2022, 22, 4197. https://doi.org/10.3390/s22114197
Wang L, Li H, Lu X, Li X, Zhang J, Wang X, Chen C. Design of Intelligent Monitoring System in Galloping Power Transmission Line. Sensors. 2022; 22(11):4197. https://doi.org/10.3390/s22114197
Chicago/Turabian StyleWang, Lijun, Hao Li, Xu Lu, Xiangyang Li, Jianyong Zhang, Xinxin Wang, and Changxin Chen. 2022. "Design of Intelligent Monitoring System in Galloping Power Transmission Line" Sensors 22, no. 11: 4197. https://doi.org/10.3390/s22114197