A Study of the Effect of DEM Spatial Resolution on Flood Simulation in Distributed Hydrological Modeling
<p>Location map of the three watersheds.</p> "> Figure 2
<p>DEM at different resolutions in Mazhou.</p> "> Figure 3
<p>Land use percentage at different DEM resolutions in the Mazhou watershed.</p> "> Figure 4
<p>Soil types at different DEM resolutions in the Mazhou watershed.</p> "> Figure 5
<p>Framework of the Liuxihe model.</p> "> Figure 6
<p>Stream classification results based at 90 m resolution DEM: (<b>a</b>) Anhe, (<b>b</b>) Dutou, (<b>c</b>) Mazhou.</p> "> Figure 7
<p>Results of parameter optimization of the Liuxihe model with the particle swarm optimization (PSO) algorithm: (<b>a</b>) changing curve of the objective function in 9 floods; (<b>b</b>) parameter evolution process for 20130721 in Anhe watershed.</p> "> Figure 8
<p>Simulation process for 8 floods in the Anhe watershed.</p> "> Figure 9
<p>Simulation process for 8 floods in the Dutou watershed.</p> "> Figure 10
<p>Simulation process for 6 floods in the Mazhou watershed.</p> "> Figure 11
<p>Changes in flood modeling accuracy with different resolutions for three watersheds.</p> "> Figure 12
<p>Improvement in the Nash–Sutcliffe efficiency coefficient after parameter optimization.</p> "> Figure 13
<p>Comparison of optimal parameter results at different resolutions for three floods in the Mazhou watershed.</p> "> Figure 14
<p>(<b>a</b>) Surface flow results in Anhe (<b>b</b>), Dutou, and (<b>c</b>) Mazhou. (<b>d</b>) Percentage of flux distance level produced by DEM at different resolutions (%).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Terrain Property Data
2.2.1. DEM
2.2.2. Land Use Data
2.2.3. Soil Type Data
2.2.4. Hydrological Data
2.3. Liuxihe Model
2.4. Model Implementation
2.4.1. Model Construction
2.4.2. Initial Model Parameters
2.4.3. Optimization of Model Parameters
2.4.4. Model Validation
2.5. Surface-Produced Flow Calculations
3. Results
3.1. Analysis of Flood Simulation Results
3.2. Effect of Different DEM Resolutions on Simulation Results
3.3. Spatial Scale Effects of Model Parameters at Different DEM Resolutions
3.4. Statistics of the Surface Flow Production at Different DEM Resolutions
4. Discussion
- (1)
- Watershed Flow Analysis
- (2)
- Watershed Confluence Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blöschl, G.; Kiss, A.; Viglione, A.; Barriendos, M.; Böhm, O.; Brázdil, R.; Coeur, D.; Demarée, G.; Llasat, M.C.; Macdonald, N.; et al. Current European flood-rich period exceptional compared with past 500 years. Nature 2020, 583, 560–566. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Woods, R.A.; Hutton, C.J.; Sivapalan, M. Dominant flood generating mechanisms across the United States. Geophys. Res. Lett. 2016, 43, 4382–4390. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, G. Towards flood risk reduction: Commonalities and differences between urban flood resilience and risk based on a case study in the Pearl River Delta. Int. J. Disaster Risk Reduct. 2023, 86, 103568. [Google Scholar] [CrossRef]
- Speight, L.J.; Cranston, M.D.; White, C.J.; Kelly, L. Operational and emerging capabilities for surface water flood forecasting. WIREs Water 2021, 8, e1517. [Google Scholar] [CrossRef]
- Emerton, R.E.; Stephens, E.M.; Pappenberger, F.; Pagano, T.C.; Weerts, A.H.; Wood, A.W.; Salamon, P.; Brown, J.D.; Hjerdt, N.; Donnelly, C.; et al. Continental and global scale flood forecasting systems. WIREs Water 2016, 3, 391–418. [Google Scholar] [CrossRef]
- Stephens, E.; Cloke, H. Improving flood forecasts for better flood preparedness in the UK (and beyond). Geogr. J. 2014, 180, 310–316. [Google Scholar] [CrossRef]
- Johnston, R.; Smakhtin, V. Hydrological Modeling of Large river Basins: How Much is Enough? Water Resour. Manag. 2014, 28, 2695–2730. [Google Scholar] [CrossRef]
- Krysanova, V.; Becker, A. Integrated modelling of hydrological processes and nutrient dynamics at the river basin scale. Hydrobiologia 1999, 410, 131–138. [Google Scholar] [CrossRef]
- Fatichi, S.; Vivoni, E.R.; Ogden, F.L.; Ivanov, V.Y.; Mirus, B.; Gochis, D.; Downer, C.W.; Camporese, M.; Davison, J.H.; Ebel, B.; et al. An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. J. Hydrol. 2016, 537, 45–60. [Google Scholar] [CrossRef]
- Song, X.; Zhang, J.; Zhan, C.; Xuan, Y.; Ye, M.; Xu, C. Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications. J. Hydrol. 2015, 523, 739–757. [Google Scholar] [CrossRef]
- Liou, E.Y.S.; James, L.D. Opset: Program for computerized selection of watershed parameter values for the stanford watershed model. 1971.
- Gao, C.; Yao, M.T.; Wang, Y.J.; Zhai, J.Q.; Buda, S.; Fischer, T.; Zeng, X.F.; Wang, W.P. Hydrological model comparison and assessment: Criteria from catchment scales and temporal resolution. Hydrol. Sci. J. 2016, 61, 1941–1951. [Google Scholar] [CrossRef]
- van Werkhoven, K.; Wagener, T.; Reed, P.; Tang, Y. Characterization of watershed model behavior across a hydroclimatic gradient. Water Resour. Res. 2008, 44, W01429. [Google Scholar] [CrossRef]
- Li, Z.J.; Yao, C.; Kong, X.G. The improved Xinanjiang model. J. Hydrodyn. 2005, 17, 746–751. [Google Scholar]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- Tan, M.L.; Gassman, P.W.; Yang, X.Y.; Haywood, J. A review of SWAT applications, performance and future needs for simulation of hydro-climatic extremes. Adv. Water Resour. 2020, 143, 103662. [Google Scholar] [CrossRef]
- Du, J.; Qian, L.; Rui, H.; Zuo, T.; Zheng, D.; Xu, Y.; Xu, C.Y. Assessing the effects of urbanization on annual runoff and flood events using an integrated hydrological modeling system for Qinhuai River basin, China. J. Hydrol. 2012, 464–465, 127–139. [Google Scholar] [CrossRef]
- Lagos, M.S.; Muñoz, J.F.; Suárez, F.I.; Fuenzalida, M.J.; Yáñez-Morroni, G.; Sanzana, P. Investigating the effects of channelization in the Silala River: A review of the implementation of a coupled MIKE-11 and MIKE-SHE modeling system. WIREs Water 2024, 11, e1673. [Google Scholar] [CrossRef]
- Fang, Z.; Zimmer, A.; Bedient, P.B.; Robinson, H.; Christian, J.; Vieux, B.E. Using a Distributed Hydrologic Model to Evaluate the Location of Urban Development and Flood Control Storage. J. Water Resour. Plan. Manag.-ASCE 2010, 136, 597–601. [Google Scholar] [CrossRef]
- Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J. Geophys. Res. Atmos. 1994, 99, 14415–14428. [Google Scholar] [CrossRef]
- Chen, Y.B.; Ren, Q.W.; Huang, F.H.; Xu, H.J.; Cluckie, I. Liuxihe Model and Its Modeling to River Basin Flood. J. Hydrol. Eng. 2011, 16, 33–50. [Google Scholar] [CrossRef]
- Wang, Z.; Lai, C.; Chen, X.; Yang, B.; Zhao, S.; Bai, X. Flood hazard risk assessment model based on random forest. J. Hydrol. 2015, 527, 1130–1141. [Google Scholar] [CrossRef]
- Apel, H.; Aronica, G.T.; Kreibich, H.; Thieken, A.H. Flood risk analyses—How detailed do we need to be? Nat. Hazards 2009, 49, 79–98. [Google Scholar] [CrossRef]
- Sanders, B.F. Evaluation of on-line DEMs for flood inundation modeling. Adv. Water Resour. 2007, 30, 1831–1843. [Google Scholar] [CrossRef]
- Li, J.; Li, L.; Zhang, T.; Kang, Y.; Zhang, B.; Feng, P. Effect of DEM data sources and resolutions on watershed flood simulations. J. Hydroelectr. Eng. 2023, 42, 26–40. [Google Scholar]
- Dixon, B.; Earls, J. Resample or not?! Effects of resolution of DEMs in watershed modeling. Hydrol. Process. 2009, 23, 1714–1724. [Google Scholar] [CrossRef]
- Rocha, J.; Duarte, A.; Silva, M.; Fabres, S.; Vasques, J.; Revilla-Romero, B.; Quintela, A. The Importance of High Resolution Digital Elevation Models for Improved Hydrological Simulations of a Mediterranean Forested Catchment. Remote Sens. 2020, 12, 3287. [Google Scholar] [CrossRef]
- Suliman, A.H.A.; Katimon, A.; Darus, I.Z.M.; Shahid, S. TOPMODEL for Streamflow Simulation of a Tropical Catchment Using Different Resolutions of ASTER DEM: Optimization Through Response Surface Methodology. Water Resour. Manag. 2016, 30, 3159–3173. [Google Scholar] [CrossRef]
- Cotter, A.S.; Chaubey, I.; Costello, T.A.; Soerens, T.S.; Nelson, M.A. Water quality model output uncertainty as affected by spatial resolution of input data. J. Am. Water Resour. Assoc. 2003, 39, 977–986. [Google Scholar] [CrossRef]
- Li, J.; Wong, D.W.S. Effects of DEM sources on hydrologic applications. Comput. Environ. Urban Syst. 2010, 34, 251–261. [Google Scholar] [CrossRef]
- Wu, S.; Li, J.; Huang, G.H. Characterization and evaluation of elevation data uncertainty in water resources modeling with GIS. Water Resour. Manag. 2008, 22, 959–972. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, Y.; Jiang, Y.; Peng, T. Effects of DEM source and resolution on the HEC-HMS hydrological simulation. Adv. Water Sci. 2015, 26, 624–630. [Google Scholar]
- Merz, R.; Blöschl, G. Regionalisation of catchment model parameters. J. Hydrol. 2004, 287, 95–123. [Google Scholar] [CrossRef]
- Guo, S.L.; Wang, J.X.; Xiong, L.H.; Ying, A.W.; Li, D.F. A macro-scale and semi-distributed monthly water balance model to predict climate change impacts in China. J. Hydrol. 2002, 268, 1–15. [Google Scholar] [CrossRef]
- Sun, L.Q.; Hu, C.; Chen, G. Effects of DEM resolution on the TOPMODEL. Adv. Water Sci. 2008, 19, 699–706. [Google Scholar]
- Chen, Y.; Ren, Q.; Huang, F.; Xu, H.; Cluckie, I. Model I: Theory and Methods. Acta Sci. Nat. Univ. Sunyatseni 2010, 49, 107–112. [Google Scholar]
- Chen, Y.; Huang, F.; Xu, H.; Ren, Q. Liuxihe Model II: Parameter Deriving. Acta Sci. Nat. Univ. Sunyatseni 2010, 49, 105–112. [Google Scholar]
- Kumar, B.; Lakshmi, V.; Patra Kanhu, C. Evaluating the Uncertainties in the SWAT Model Outputs due to DEM Grid Size and Resampling Techniques in a Large Himalayan River Basin. J. Hydrol. Eng. 2017, 22, 04017039. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Xu, H. Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization. Hydrol. Earth Syst. Sci. 2016, 20, 375–392. [Google Scholar] [CrossRef]
- Chen, Y.B.; Li, J.; Wang, H.Y.; Qin, J.M.; Dong, L.M. Large-watershed flood forecasting with high-resolution distributed hydrological model. Hydrol. Earth Syst. Sci. 2017, 21, 735–749. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.B.; Wang, H.Y.; Qin, J.M.; Li, J.; Chiao, S. Extending flood forecasting lead time in a large watershed by coupling WRF QPF with a distributed hydrological model. Hydrol. Earth Syst. Sci. 2017, 21, 1279–1294. [Google Scholar] [CrossRef]
- Li, J.; Yuan, D.X.; Liu, J.; Jiang, Y.J.; Chen, Y.B.; Hsu, K.L.; Sorooshian, S. Predicting floods in a large karst river basin by coupling PERSIANN-CCS QPEs with a physically based distributed hydrological model. Hydrol. Earth Syst. Sci. 2019, 23, 1505–1532. [Google Scholar] [CrossRef]
- Li, J.; Hong, A.H.; Yuan, D.X.; Jiang, Y.J.; Zhang, Y.Z.; Deng, S.J.; Cao, C.; Liu, J.; Chen, Y.B. Elaborate simulations and forecasting of the effects of urbanization on karst flood events using the improved Karst-Liuxihe model. Catena 2021, 197, 104990. [Google Scholar] [CrossRef]
- Gu, Y.; Chen, Y.; Sun, H.; Liu, J. Remote Sensing-Supported Flood Forecasting of Urbanized Watersheds—A Case Study in Southern China. Remote Sens. 2022, 14, 6129. [Google Scholar] [CrossRef]
- Li, J.Y.; Chen, Y.B.; Zhu, Y.Z.; Liu, J. Study of Flood Simulation in Small and Medium-Sized Basins Based on the Liuxihe Model. Sustainability 2023, 15, 11225. [Google Scholar] [CrossRef]
- Zhu, Y.Z.; Chen, Y.B.; Zhao, Y.J.; Zhou, F.; Xu, S.C. Application and Research of Liuxihe Model in the Simulation of Inflow Flood at Zaoshi Reservoir. Sustainability 2023, 15, 9857. [Google Scholar] [CrossRef]
- Xu, S.C.; Chen, Y.B.; Xing, L.X.; Li, C. Baipenzhu Reservoir Inflow Flood Forecasting Based on a Distributed Hydrological Model. Water 2021, 13, 272. [Google Scholar] [CrossRef]
- Peckham, S.D.; Gupta, V.K. A reformulation of Horton’s laws for large river networks in terms of statistical self-similarity. Water Resour. Res. 1999, 35, 2763–2777. [Google Scholar] [CrossRef]
- Day, T. Strahler’s Physical geography, New York: Wiley (1951; 1960; 1969; 1975). Prog. Phys. Geogr. Earth Environ. 2010, 34, 587–594. [Google Scholar] [CrossRef]
- Liu, Z.J.; Guo, S.L.; Zhang, H.G.; Liu, D.D.; Yang, G. Comparative Study of Three Updating Procedures for Real-Time Flood Forecasting. Water Resour. Manag. 2016, 30, 2111–2126. [Google Scholar] [CrossRef]
- Arya, L.M.; Leij, F.J.; Shouse, P.J.; van Genuchten, M.T. Relationship between the Hydraulic Conductivity Function and the Particle-Size Distribution. Soil Sci. Soc. Am. J. 1999, 63, 1063–1070. [Google Scholar] [CrossRef]
- Peugeot, C.; Cappelaere, B.; Vieux, B.E.; Séguis, L.; Maia, A. Hydrologic process simulation of a semiarid, endoreic catchment in Sahelian West Niger. 1. Model-aided data analysis and screening. J. Hydrol. 2003, 279, 224–243. [Google Scholar] [CrossRef]
- Cappelaere, B.; Vieux, B.E.; Peugeot, C.; Maia, A.; Séguis, L. Hydrologic process simulation of a semiarid, endoreic catchment in Sahelian West Niger. 2. Model calibration and uncertainty characterization. J. Hydrol. 2003, 279, 244–261. [Google Scholar] [CrossRef]
- Lei, X.; Jia, Y.; Jiang, Y.; Tian, Y. Parameter optimization of WEP model and its application to the upstream of Han River. J. Hydraul. Eng. 2009, 40, 1481–1488. [Google Scholar]
- Marini, F.; Walczak, B. Particle swarm optimization (PSO). A tutorial. Chemom. Intell. Lab. Syst. 2015, 149, 153–165. [Google Scholar] [CrossRef]
- Thangaraj, R.; Pant, M.; Abraham, A.; Bouvry, P. Particle swarm optimization: Hybridization perspectives and experimental illustrations. Appl. Math. Comput. 2011, 217, 5208–5226. [Google Scholar] [CrossRef]
- Engelbrecht, A.P. Particle swarm optimization with crossover: A review and empirical analysis. Artif. Intell. Rev. 2016, 45, 131–165. [Google Scholar] [CrossRef]
- Nayak, J.; Swapnarekha, H.; Naik, B.; Dhiman, G.; Vimal, S. 25 Years of Particle Swarm Optimization: Flourishing Voyage of Two Decades. Arch. Comput. Methods Eng. 2023, 30, 1663–1725. [Google Scholar] [CrossRef]
- Sun, H.G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y.Q. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Wang, S.; Peng, H.; Hu, Q.; Jiang, M. Analysis of runoff generation driving factors based on hydrological model and interpretable machine learning method. J. Hydrol.-Reg. Stud. 2022, 42, 101139. [Google Scholar] [CrossRef]
Resolution | Elevation (m) | Slope (°) | Watershed | ||||
---|---|---|---|---|---|---|---|
Min | Mean | Max | Min | Mean | Max | Area (km2) | |
30 m | 169 | 437.62 | 1201 | 0 | 15.17 | 65.39 | 1742.61 |
90 m | 169 | 445.86 | 1212 | 0 | 10.81 | 48.59 | 1742.88 |
150 m | 169 | 449.14 | 1186 | 0 | 8.86 | 37.55 | 1701.49 |
200 m | 180 | 446.65 | 1164 | 0 | 7.76 | 31.58 | 1742.88 |
300 m | 174 | 445.87 | 1129 | 0.03 | 6.36 | 25.15 | 1746.81 |
400 m | 178 | 447.22 | 1145 | 0.03 | 5.46 | 22.89 | 1748.48 |
500 m | 180 | 448.08 | 1135 | 0.05 | 4.83 | 19.32 | 1752.75 |
Land Use Type | Resolution Percentage (%) | ||||||
---|---|---|---|---|---|---|---|
30 m | 90 m | 150 m | 200 m | 300 m | 400 m | 500 m | |
Unused | 0.06 | 0.04 | 0.02 | 0.02 | 0.03 | 0.02 | 0.05 |
Cropland | 11.08 | 10.76 | 11.02 | 11.1 | 11.2 | 10.72 | 10.51 |
Forest | 87.58 | 87.94 | 87.61 | 87.61 | 87.44 | 87.77 | 87.7 |
Shrub | 0.02 | 0.02 | 0.04 | 0.03 | 0.03 | 0.03 | 0.02 |
Grassland | 0.06 | 0.08 | 0.05 | 0.05 | 0.07 | 0.08 | 0.11 |
Water | 0.17 | 0.17 | 0.15 | 0.17 | 0.15 | 0.16 | 0.22 |
Impervious | 1.03 | 0.99 | 1.11 | 1.02 | 1.09 | 1.22 | 1.39 |
Soil Type | Different Resolution (%) | ||||||
---|---|---|---|---|---|---|---|
30 m | 90 m | 150 m | 200 m | 300 m | 400 m | 500 m | |
Haplic acrisols | 79.56 | 79.86 | 80.32 | 79.87 | 80.32 | 80.18 | 79.99 |
Haplic alisols | 1.17 | 1.08 | 1.11 | 1.1 | 1.14 | 1.04 | 1.12 |
Cumulic anthrosols | 7.12 | 7.12 | 6.35 | 7.11 | 7.06 | 7.12 | 7.17 |
Humic acrisols | 12.15 | 11.94 | 12.2 | 11.92 | 11.48 | 11.66 | 11.72 |
Flood Number | Start (h:m) | Span (Hour) | Total Rainfall (mm) | Peak Flow (m3/s) | Scale | Resolution Test | Watershed |
---|---|---|---|---|---|---|---|
20190707 | 0 | 120 | 162 | 126 | Small | Anhe | |
20200402 | 0 | 96 | 110 | 115 | Small | ||
20210530 | 7 | 96 | 86 | 116 | Small | ★ | |
20150704 | 0 | 96 | 114 | 179 | Medium | ||
20130604 | 0 | 120 | 170 | 186 | Medium | ★ | |
20140811 | 20 | 100 | 173 | 201 | Large | ||
20160716 | 15 | 76 | 76 | 263 | Large | ★ | |
20180607 | 0 | 192 | 215 | 366 | Large | ||
20160126 | 12 | 156 | 136 | 182 | Small | ★ | Dutou |
20170615 | 5 | 72 | 76 | 198 | Small | ||
20200402 | 0 | 144 | 142 | 182.8 | Small | ||
20150525 | 20 | 100 | 75 | 218 | Medium | ★ | |
20180607 | 0 | 120 | 115 | 214 | Medium | ||
20160317 | 18 | 198 | 183 | 317 | Large | ||
20160826 | 0 | 88 | 119 | 354 | Large | ★ | |
20190609 | 20 | 192 | 279 | 1010 | Large | ||
20150525 | 20 | 76 | 62.3 | 294 | Small | Mazhou | |
20180106 | 4 | 100 | 134.3 | 299 | Small | ★ | |
20180605 | 12 | 72 | 96.3 | 281 | Small | ||
20140521 | 12 | 96 | 68.7 | 422 | Medium | ★ | |
20200605 | 12 | 204 | 113 | 331.6 | Medium | ||
20190623 | 0 | 192 | 191.6 | 827 | Large | ★ |
Watersheds Name | Cumulative Flow Threshold | Number of River Classes | Number of River Units | Number of Slope Units | Number of Virtual Rivers |
---|---|---|---|---|---|
Anhe | 600 | 3 | 792 | 30,142 | 27 |
Dutou | 1300 | 3 | 1044 | 52,569 | 22 |
Mazhou | 4500 | 3 | 2365 | 212,805 | 20 |
Land Use | Evaporation Coefficient | Roughness Coefficient |
---|---|---|
Cropland | 0.7 | 0.15 |
Forest | 0.7 | 0.7 |
Shrub | 0.7 | 0.4 |
Grassland | 0.7 | 0.2 |
Water | 0.7 | 0.2 |
Impervious | 0.7 | 0.1 |
Unused | 0.7 | 0.1 |
Soil Name | Thickness of Soil Layer (mm) | Saturated Water Content | Field Moisture Retention | Saturated Hydraulic Conductivity (mm·h−1) | Soil Characteristic Coefficient | Wilting Moisture Content |
---|---|---|---|---|---|---|
CN10033 | 1000 | 0.451 | 0.3 | 8.64 | 2.5 | 0.176 |
CN10039 | 600 | 0.515 | 0.422 | 1.95 | 2.5 | 0.296 |
CN10047 | 1000 | 0.455 | 0.319 | 6.34 | 2.5 | 0.192 |
CN10051 | 1000 | 0.508 | 0.411 | 2.19 | 2.5 | 0.28 |
CN10065 | 1000 | 0.491 | 0.433 | 0.47 | 2.5 | 0.315 |
CN10093 | 1000 | 0.454 | 0.063 | 74.49 | 2.5 | 0.063 |
CN10097 | 700 | 0.455 | 0.314 | 7.04 | 2.5 | 0.187 |
CN10115 | 700 | 0.5 | 0.377 | 4.89 | 2.5 | 0.221 |
CN10169 | 1000 | 0.438 | 0.192 | 35.15 | 2.5 | 0.109 |
CN10307 | 1000 | 0.451 | 0.315 | 6.28 | 2.5 | 0.193 |
CN10515 | 1000 | 0.444 | 0.16 | 54.15 | 2.5 | 0.086 |
CN10647 | 1000 | 0.454 | 0.337 | 3.99 | 2.5 | 0.214 |
CN10793 | 1110 | 0.436 | 0.249 | 15.76 | 2.5 | 0.149 |
CN30135 | 1000 | 0.435 | 0.207 | 28.33 | 2.5 | 0.121 |
CN30147 | 1000 | 0.443 | 0.262 | 14.88 | 2.5 | 0.149 |
CN30149 | 1300 | 0.429 | 0.211 | 24.13 | 2.5 | 0.132 |
CN30423 | 670 | 0.446 | 0.24 | 21.87 | 2.5 | 0.126 |
CN60041 | 870 | 0.446 | 0.24 | 21.87 | 2.5 | 0.126 |
Parameters | KS | N | M | Zs | B | Bs | Ep |
ah20130721 | 0.721802 | 0.876947 | 0.99860 | 1.0275712 | 1.152432886 | 0.567 | 0.23 |
Parameters | Bw | Csat | Cfc | Cwl | Ec | Ss | K |
ah20130721 | 1.438850 | 0.835808 | 0.794393 | 0.88337671 | 0.653371 | 1.266 | 0.995 |
Flood Number | Flood Simulation | NSE | R | RE | PE | PT/h |
---|---|---|---|---|---|---|
20130604 | Simulation | 0.956 | 0.979 | 0.219 | 0.085 | 0 |
Optimization | 0.970 | 0.987 | 0.223 | 0.002 | 0 | |
20140811 | Simulation | 0.449 | 0.925 | 0.782 | 0.000 | −1 |
Optimization | 0.953 | 0.980 | 0.245 | 0.010 | −1 | |
20150704 | Simulation | 0.831 | 0.943 | 0.304 | 0.107 | 1 |
Optimization | 0.881 | 0.939 | 0.165 | 0.018 | 1 | |
20160716 | Simulation | 0.42 | 0.529 | 0.933 | 0.072 | 2 |
Optimization | 0.947 | 0.978 | 0.217 | 0.060 | 0 | |
20180607 | Simulation | 0.636 | 0.844 | 0.839 | 0.356 | 1 |
Optimization | 0.855 | 0.967 | 0.278 | 0.091 | −1 | |
20190707 | Simulation | 0.309 | 0.799 | 1.182 | 0.156 | 5 |
Optimization | 0.903 | 0.954 | 0.214 | 0.013 | −2 | |
20200402 | Simulation | 0.596 | 0.878 | 0.639 | 0.096 | 4 |
Optimization | 0.906 | 0.952 | 0.277 | 0.012 | −3 | |
20210530 | Simulation | 0.622 | 0.886 | 0.331 | 0.009 | −2 |
Optimization | 0.874 | 0.947 | 0.192 | 0.026 | −1 |
Flood Number | Flood Simulation | NSE | R | RE | PE | PT/h |
---|---|---|---|---|---|---|
20150525 | Simulation | 0.785 | 0.896 | 0.410 | 0.013 | 0 |
Optimization | 0.846 | 0.925 | 0.196 | 0.098 | 0 | |
20160126 | Simulation | 0.736 | 0.876 | 0.387 | 0.134 | 3 |
Optimization | 0.899 | 0.953 | 0.202 | 0.021 | −3 | |
20160317 | Simulation | 0.603 | 0.823 | 0.684 | 0.210 | 2 |
Optimization | 0.908 | 0.960 | 0.262 | 0.019 | 0 | |
20160826 | Simulation | 0.828 | 0.912 | 1.049 | 0.032 | 2 |
Optimization | 0.945 | 0.980 | 0.407 | 0.018 | −1 | |
20170615 | Simulation | 0.415 | 0.787 | 0.495 | 0.013 | 3 |
Optimization | 0.849 | 0.944 | 0.294 | 0.052 | 0 | |
20180607 | Simulation | 0.792 | 0.921 | 1.328 | 0.129 | −1 |
Optimization | 0.939 | 0.972 | 0.407 | 0.011 | 3 | |
20190610 | Simulation | 0.25 | 0.683 | 0.335 | 0.005 | 6 |
Optimization | 0.785 | 0.896 | 0.196 | 0.098 | −3 | |
20200402 | Simulation | 0.508 | 0.829 | 0.258 | 0.348 | −12 |
Optimization | 0.8 | 0.854 | 0.250 | 0.214 | 3 |
Flood Number | Flood Simulation | NSE | R | RE | PE | PT/h |
---|---|---|---|---|---|---|
20140521 | Simulation | 0.233 | 0.756 | 0.984 | 0.128 | 0 |
Optimization | 0.877 | 0.762 | 0.502 | 0.03 | −2 | |
20150525 | Simulation | 0.591 | 0.804 | 0.801 | 0.100 | −4 |
Optimization | 0.668 | 0.842 | 0.767 | 0.115 | −2 | |
20180106 | Simulation | 0.228 | 0.814 | 1.318 | 0.002 | −12 |
Optimization | 0.913 | 0.779 | 0.677 | 0.123 | 2 | |
20180605 | Simulation | 0.553 | 0.225 | 3.450 | 0.016 | −13 |
Optimization | 0.779 | 0.860 | 1.489 | 0.053 | 1 | |
20190623 | Simulation | 0.603 | 0.850 | 0.497 | 0.056 | 7 |
Optimization | 0.757 | 0.882 | 0.29 | 0.013 | −2 | |
20200605 | Simulation | 0.520 | 0.694 | 1.845 | 0.110 | 2 |
Optimization | 0.610 | 0.877 | 0.785 | 0.088 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Chen, Y. A Study of the Effect of DEM Spatial Resolution on Flood Simulation in Distributed Hydrological Modeling. Remote Sens. 2024, 16, 3105. https://doi.org/10.3390/rs16163105
Zhu H, Chen Y. A Study of the Effect of DEM Spatial Resolution on Flood Simulation in Distributed Hydrological Modeling. Remote Sensing. 2024; 16(16):3105. https://doi.org/10.3390/rs16163105
Chicago/Turabian StyleZhu, Hengkang, and Yangbo Chen. 2024. "A Study of the Effect of DEM Spatial Resolution on Flood Simulation in Distributed Hydrological Modeling" Remote Sensing 16, no. 16: 3105. https://doi.org/10.3390/rs16163105
APA StyleZhu, H., & Chen, Y. (2024). A Study of the Effect of DEM Spatial Resolution on Flood Simulation in Distributed Hydrological Modeling. Remote Sensing, 16(16), 3105. https://doi.org/10.3390/rs16163105