Validation and Evaluation of GRACE-FO Estimates with In Situ Bottom Pressure Array Measurements in the South China Sea
<p>(<b>a</b>) Map of the study area in the South China Sea (SCS). The used (red dots) and not used (red circle) ocean bottom pressure (OBP) records at the pressure-recording inverted echo sounder (PIES) stations in the study are indicated. The yellow dashed line represents the section chosen for calculating the volume transport anomaly of abyssal circulation. (<b>b</b>) Topographic map of the seabed west of the Luzon Strait (LS) with the same spatial distribution as (<b>a</b>).</p> "> Figure 2
<p>The processed time series of the PIES OBP anomalies.</p> "> Figure 3
<p>Comparison between the station-averaged PIES OBP anomaly (C14–C18, C20–C31, and C33–C40) and the GRACE-FO OBP anomaly from July 2018 to June 2019. Note that the GRACE-FO data for August and September 2018 were missing because of sensor failure. The PIES OBP anomaly is represented by the black line, whereas the GRACE-FO OBP anomaly provided by JPL, CSR, and GSFC are represented by the red, blue, and green lines, respectively. The Cor and RMSD between PIES and GRACE-FO are displayed below the figure. The colors of the text correspond to the colors of the lines JPL (red), CSR (blue), and GSFC (green). Bars indicate the standard deviations of the spatial average.</p> "> Figure 4
<p>A comparison of the in situ GRACE-FO mascon solutions with PIES observations. The PIES data are represented by the black line, whereas the JPL, CSR, and GSFC estimates are represented by the red, blue, and green lines, respectively. Note that the y-axis ranges of the panels C36, C37, and C38 are −16 to 16, while the y-axis ranges of the remaining panels are −4 to 4. The Cor and RMSD between PIES and JPL (CSR) are shown above each panel, and the colors of the text correspond to the colors of the lines JPL (red) and CSR (blue), respectively. Statistics for GSFC (green) are shown below each panel.</p> "> Figure 5
<p>The seasonal pattern derived from the GRACE-FO mascon solutions in the SCS from July 2018 to June 2019 is represented at an equivalent water height. JPL (<b>left</b>), CSR (<b>middle</b>), and GSFC (<b>right</b>) are listed, and rows represent winter (<b>a</b>–<b>c</b>), spring (<b>d</b>–<b>f</b>), summer (<b>g</b>–<b>i</b>), and autumn (<b>j</b>–<b>l</b>). Note that the winter in (<b>a</b>–<b>c</b>) is the average of December 2018, January, and February 2019; spring in (<b>d</b>–<b>f</b>) is the average of March, April, and May 2019; summer in (<b>g</b>–<b>i</b>) is the average of July 2018 and June 2019; and autumn in (<b>j</b>–<b>l</b>) is the average of October and November 2018. Red dots represent C36, C37, and C38, whereas purple dots represent other stations. Note that only the GRACE-FO OBP anomaly within the seasonal mean plus or minus the standard deviation of that season were retained. The stippled overlay areas represent the regions in the ocean where the OBP variations were beyond the range of the seasonal mean plus or minus the standard deviation.</p> "> Figure 6
<p>Same as <a href="#remotesensing-15-02804-f003" class="html-fig">Figure 3</a>, but with spatial averages computed without estimates at C36, C37, and C38.</p> "> Figure 7
<p>The Cor between the GRACE-FO OBP series from (<b>a</b>) JPL, (<b>b</b>) CSR, and (<b>c</b>) GSFC, as well as the PIES OBP anomalies. Background colors represent the magnitude of the Cor. A black dot on top of a circle indicates that the correlation at that station is statistically insignificant (<span class="html-italic">p</span>-value > 0.1), while a circle without a black dot indicates that the correlation at that station is statistically significant (<span class="html-italic">p</span>-value < 0.1). Panels (<b>d</b>–<b>f</b>) have the same form as (<b>a</b>–<b>c</b>), but show the spatial distribution of RMSD.</p> "> Figure 8
<p>(<b>a</b>) Profile map of the seabed between C26 and C30 (yellow dashed line in <a href="#remotesensing-15-02804-f001" class="html-fig">Figure 1</a>), with red dots indicating C26 and C30, and brown representing the seabed topography. (<b>b</b>) 30-day smoothed abyssal volume transport anomaly in the SCS. The red line represents the abyssal volume transport anomaly calculated using C30 and C26 observations projected onto points <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>P</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> </mrow> </semantics></math> at 3200 m depth, whereas the black line is modified from Figure 14a in Zheng et al. (2022) [<a href="#B40-remotesensing-15-02804" class="html-bibr">40</a>].</p> "> Figure 9
<p>(<b>a</b>) The calculated volume transport anomaly from June 2018 to June 2022 of the C26–C30 section, based on OBP anomalies from PIES (red line) and GSFC mascon solutions (black line). The black dotted line represents that the satellite data are missing here, including but not limited to August 2018 and September 2018. (<b>b</b>) The volume transport anomaly from July 2018 to June 2019, i.e., the shadowed part in (<b>a</b>). The Cor and RMSD are displayed in the lower left corner of the panel.</p> ">
Abstract
:1. Introduction
2. Data and Methods
2.1. PIES OBP Measurements
2.2. GRACE-FO Mascon Solutions
2.3. Validation of GRACE-FO’s Accuracy
2.4. Calculation of Abyssal Volume Transport
3. Results and Discussion
3.1. Comparison of OBP between GRACE-FO and PIES
3.2. Application to Transport Monitoring
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tapley, B.D.; Bettadpur, S.; Watkins, M.; Reigber, C. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 2004, 31, L09607. [Google Scholar] [CrossRef]
- Landerer, F.W.; Flechtner, F.M.; Save, H.; Webb, F.H.; Bandikova, T.; Bertiger, W.I.; Bettadpur, S.V.; Byun, S.H.; Dahle, C.; Dobslaw, H.; et al. Extending the Global Mass Change Data Record: GRACE Follow-On Instrument and Science Data Performance. Geophys. Res. Lett. 2020, 47, e2020GL088306. [Google Scholar] [CrossRef]
- Shang, P.; Su, X.; Luo, Z. Characteristics of the Greenland Ice Sheet Mass Variations Revealed by GRACE/GRACE Follow-On Gravimetry. Remote Sens. 2022, 14, 4442. [Google Scholar] [CrossRef]
- Velicogna, I.; Mohajerani, Y.; A, G.; Landerer, F.; Mouginot, J.; Noel, B.; Rignot, E.; Sutterley, T.; van den Broeke, M.; van Wessem, M.; et al. Continuity of Ice Sheet Mass Loss in Greenland and Antarctica from the GRACE and GRACE Follow-On Missions. Geophys. Res. Lett. 2020, 47, e2020GL087291. [Google Scholar] [CrossRef]
- Feng, W.; Zhong, M.; Lemoine, J.-M.; Biancale, R.; Hsu, H.-T.; Xia, J. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 2013, 49, 2110–2118. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, S.; Liu, S.; Leng, G.; Peng, J.; Huang, Q.; Li, P. GRACE-Based Terrestrial Water Storage in Northwest China: Changes and Causes. Remote Sens. 2018, 10, 1163. [Google Scholar] [CrossRef]
- Willis, J.K.; Chambers, D.P.; Nerem, R.S. Assessing the globally averaged sea level budget on seasonal to interannual timescales. J. Geophys. Res. 2008, 113, C06015. [Google Scholar] [CrossRef]
- Chambers, D.P.; Cazenave, A.; Champollion, N.; Dieng, H.; Llovel, W.; Forsberg, R.; von Schuckmann, K.; Wada, Y. Evaluation of the Global Mean Sea Level Budget between 1993 and 2014. Surv. Geophys. 2016, 38, 309–327. [Google Scholar] [CrossRef]
- Poropat, L.; Dobslaw, H.; Zhang, L.; Macrander, A.; Boebel, O.; Thomas, M. Time Variations in Ocean Bottom Pressure from a Few Hours to Many Years: In Situ Data, Numerical Models, and GRACE Satellite Gravimetry. J. Geophys. Res. Ocean. 2018, 123, 5612–5623. [Google Scholar] [CrossRef]
- Zheng, H.; Zhu, X.-H.; Nakamura, H.; Park, J.-H.; Jeon, C.; Zhao, R.; Nishina, A.; Zhang, C.; Na, H.; Zhu, Z.-N.; et al. Generation and propagation of 21-day bottom pressure variability driven by wind stress curl in the East China Sea. Acta Oceanol. Sin. 2020, 39, 91–106. [Google Scholar] [CrossRef]
- Kanzow, T. Seasonal variation of ocean bottom pressure derived from Gravity Recovery and Climate Experiment (GRACE): Local validation and global patterns. J. Geophys. Res. 2005, 110, C09001. [Google Scholar] [CrossRef]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Wahr, J.M.; Jayne, S.R.; Bryan, F.O. A method of inferring changes in deep ocean currents from satellite measurements of time-variable gravity. J. Geophys. Res. Ocean. 2002, 107, 3218. [Google Scholar] [CrossRef]
- Ponte, R.M.; Quinn, K.J.; Wunsch, C.; Heimbach, P. A comparison of model and GRACE estimates of the large-scale seasonal cycle in ocean bottom pressure. Geophys. Res. Lett. 2007, 34, L09603. [Google Scholar] [CrossRef]
- Morison, J.; Wahr, J.; Kwok, R.; Peralta-Ferriz, C. Recent trends in Arctic Ocean mass distribution revealed by GRACE. Geophys. Res. Lett. 2007, 34, L07602. [Google Scholar] [CrossRef]
- Chambers, D.P.; Willis, J.K. A Global Evaluation of Ocean Bottom Pressure from GRACE, OMCT, and Steric-Corrected Altimetry. J. Atmos. Ocean. Technol. 2010, 27, 1395–1402. [Google Scholar] [CrossRef]
- Peralta-Ferriz, C.; Morison, J.H.; Wallace, J.M.; Bonin, J.A.; Zhang, J. Arctic Ocean circulation patterns revealed by GRACE. J. Clim. 2014, 27, 1445–1468. [Google Scholar] [CrossRef]
- Rietbroek, R.; LeGrand, P.; Wouters, B.; Lemoine, J.M.; Ramillien, G.; Hughes, C. Comparison of in situ bottom pressure data with GRACE gravimetry in the Crozet-Kerguelen region. Geophys. Res. Lett. 2006, 33, L21601. [Google Scholar] [CrossRef]
- Ponte, R.M.; Quinn, K.J. Bottom pressure changes around Antarctica and wind-driven meridional flows. Geophys. Res. Lett. 2009, 36, L13604. [Google Scholar] [CrossRef]
- Volkov, D.L.; Landerer, F.W. Nonseasonal fluctuations of the Arctic Ocean mass observed by the GRACE satellites. J. Geophys. Res. Ocean. 2013, 118, 6451–6460. [Google Scholar] [CrossRef]
- Munekane, H. Ocean mass variations from GRACE and tsunami gauges. J. Geophys. Res. 2007, 112, B07403. [Google Scholar] [CrossRef]
- Park, J.-H.; Watts, D.R.; Donohue, K.A.; Jayne, S.R. A comparison of in situ bottom pressure array measurements with GRACE estimates in the Kuroshio Extension. Geophys. Res. Lett. 2008, 35, L17601. [Google Scholar] [CrossRef]
- Boening, C.; Lee, T.; Zlotnicki, V. A record-high ocean bottom pressure in the South Pacific observed by GRACE. Geophys. Res. Lett. 2011, 38, L04602. [Google Scholar] [CrossRef]
- Johnson, G.C.; Chambers, D.P. Ocean bottom pressure seasonal cycles and decadal trends from GRACE Release-05: Ocean circulation implications. J. Geophys. Res. Ocean. 2013, 118, 4228–4240. [Google Scholar] [CrossRef]
- Cheng, X.; Ou, N.; Chen, J.; Huang, R.X. On the seasonal variations of ocean bottom pressure in the world oceans. Geosci. Lett. 2021, 8, 29. [Google Scholar] [CrossRef]
- Quinn, K.J.; Ponte, R.M. Estimating high frequency ocean bottom pressure variability. Geophys. Res. Lett. 2011, 38, L08611. [Google Scholar] [CrossRef]
- Köhl, A.; Siegismund, F.; Stammer, D. Impact of assimilating bottom pressure anomalies from GRACE on ocean circulation estimates. J. Geophys. Res. Ocean. 2012, 117, C04032. [Google Scholar] [CrossRef]
- Makowski, J.K.; Chambers, D.P.; Bonin, J.A. Using ocean bottom pressure from the gravity recovery and climate experiment (GRACE) to estimate transport variability in the southern Indian Ocean. J. Geophys. Res. Ocean. 2015, 120, 4245–4259. [Google Scholar] [CrossRef]
- Peralta-Ferriz, C.; Woodgate, R.A. The Dominant Role of the East Siberian Sea in Driving the Oceanic Flow through the Bering Strait—Conclusions from GRACE Ocean Mass Satellite Data and In Situ Mooring Observations between 2002 and 2016. Geophys. Res. Lett. 2017, 44, 11,472–11,481. [Google Scholar] [CrossRef]
- Koelling, J.; Send, U.; Lankhorst, M. Decadal Strengthening of Interior Flow of North Atlantic Deep Water Observed by GRACE Satellites. J. Geophys. Res. Ocean. 2020, 125, e2020JC016217. [Google Scholar] [CrossRef]
- Zhao, R.; Zhu, X.-H.; Park, J.-H. Near 5-Day Nonisostatic Response to Atmospheric Surface Pressure and Coastal-Trapped Waves Observed in the Northern South China Sea. J. Phys. Oceanogr. 2017, 47, 2291–2303. [Google Scholar] [CrossRef]
- Zhang, K.; Zhu, X.-H.; Zhao, R. Near 7-day response of ocean bottom pressure to atmospheric surface pressure and winds in the northern South China Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2018, 132, 6–15. [Google Scholar] [CrossRef]
- Yuan, D. A numerical study of the South China Sea deep circulation and its relation to the Luzon Strait transport. Acta Oceanol. Sin. 2002, 2, 187–202. [Google Scholar]
- Gan, J.; Liu, Z.; Hui, C.R. A three-layer alternating spinning circulation in the South China Sea. J. Phys. Oceanogr. 2016, 46, 2309–2315. [Google Scholar] [CrossRef]
- Cai, Z.; Gan, J.; Liu, Z.; Hui, C.R.; Li, J. Progress on the formation dynamics of the layered circulation in the South China Sea. Prog. Oceanogr. 2020, 181, 102246. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, J.; Wang, Y.; Li, S.; Xu, T.; Wei, Z.; Qu, T. Overview of the multi-layer circulation in the South China Sea. Prog. Oceanogr. 2019, 175, 171–182. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Q.; Cai, S.; Shang, X.; Peng, S.; Shu, Y.; Xiao, J.; Xie, X.; Zhang, Z.; Liu, Z. Advances in research of the mid-deep South China Sea circulation. Sci. China Earth Sci. 2019, 62, 1992–2004. [Google Scholar] [CrossRef]
- Zhao, R.; Zhu, X.-H.; Zhang, C.; Zheng, H.; Zhu, Z.-N.; Ren, Q.; Liu, Y.; Nan, F.; Yu, F. Summer anticyclonic eddies carrying Kuroshio waters observed by a large CPIES array west of the Luzon Strait. J. Phys. Oceanogr. 2023, 53, 341–359. [Google Scholar] [CrossRef]
- Zheng, H.; Zhu, X.-H.; Chen, J.; Wang, M.; Zhao, R.; Zhang, C.; Zhu, Z.-N.; Ren, Q.; Liu, Y.; Nan, F. Observation of bottom-trapped topographic Rossby waves to the west of the Luzon Strait, South China Sea. J. Phys. Oceanogr. 2022, 52, 2853–2872. [Google Scholar] [CrossRef]
- Zheng, H.; Zhu, X.-H.; Zhang, C.; Zhao, R.; Zhu, Z.-N.; Ren, Q.; Liu, Y.; Nan, F.; Yu, F. Observation of Abyssal Circulation to the West of the Luzon Strait, South China Sea. J. Phys. Oceanogr. 2022, 52, 2091–2109. [Google Scholar] [CrossRef]
- Kennelly, M.; Tracey, K.; Watts, D.R. Inverted Echo Sounder Data Processing Manual; Graduate School of Oceanography, University of Rhode Island: Narragansett, RI, USA, 2007. [Google Scholar]
- Watkins, M.M.; Wiese, D.N.; Yuan, D.-N.; Boening, C.; Landerer, F.W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 2015, 120, 2648–2671. [Google Scholar] [CrossRef]
- Save, H.; Bettadpur, S.; Tapley, B.D. High-resolution CSR GRACE RL05 mascons. J. Geophys. Res. Solid Earth 2016, 121, 7547–7569. [Google Scholar] [CrossRef]
- Loomis, B.D.; Luthcke, S.B.; Sabaka, T.J. Regularization and error characterization of GRACE mascons. J. Geod. 2019, 93, 1381–1398. [Google Scholar] [CrossRef]
- Bingham, R.J.; Hughes, C.W. Determining North Atlantic meridional transport variability from pressure on the western boundary: A model investigation. J. Geophys. Res. 2008, 113, C09008. [Google Scholar] [CrossRef]
- Landerer, F.W.; Wiese, D.N.; Bentel, K.; Boening, C.; Watkins, M.M. North Atlantic meridional overturning circulation variations from GRACE ocean bottom pressure anomalies. Geophys. Res. Lett. 2015, 42, 8114–8121. [Google Scholar] [CrossRef]
- Zhu, Y.; Yao, J.; Xu, T.; Li, S.; Wang, Y.; Wei, Z. Weakening Trend of Luzon Strait Overflow Transport in the Past Two Decades. Geophys. Res. Lett. 2022, 49, e2021GL097395. [Google Scholar] [CrossRef]
- Zhu, Y.; Yao, J.; Li, S.; Xu, T.; Huang, R.X.; Nie, X.; Pan, H.; Wang, Y.; Fang, Y.; Wei, Z. Decadal Weakening of Abyssal South China Sea Circulation. Geophys. Res. Lett. 2022, 49, e2022GL100582. [Google Scholar] [CrossRef]
- Bentel, K.; Landerer, F.W.; Boening, C. Monitoring Atlantic overturning circulation and transport variability with GRACE-type ocean bottom pressure observations—A sensitivity study. Ocean. Sci. 2015, 11, 953–963. [Google Scholar] [CrossRef]
- Mu, D.; Xu, T.; Xu, G. Detecting coastal ocean mass variations with GRACE mascons. Geophys. J. Int. 2019, 217, 2071–2080. [Google Scholar] [CrossRef]
- Zhu, X.-H.; Zhao, R.; Guo, X.; Long, Y.; Ma, Y.-L.; Fan, X. A long-term volume transport time series estimated by combining in situ observation and satellite altimeter data in the northern South China Sea. J. Oceanogr. 2015, 71, 663–673. [Google Scholar] [CrossRef]
Institution | JPL | CSR | GSFC |
---|---|---|---|
Version | RL06 2.0 | RL06 2.0 | RL06 1.0 |
Original Resolution | 3° × 3° | 1° × 1° | 1° × 1° |
Grid size | 0.5° × 0.5° | 0.25° × 0.25° | 0.5° × 0.5° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zheng, H.; Zhu, X.-H.; Zhao, R.; Wang, M.; Chen, J.; Ma, Y.; Nan, F.; Yu, F. Validation and Evaluation of GRACE-FO Estimates with In Situ Bottom Pressure Array Measurements in the South China Sea. Remote Sens. 2023, 15, 2804. https://doi.org/10.3390/rs15112804
Wang X, Zheng H, Zhu X-H, Zhao R, Wang M, Chen J, Ma Y, Nan F, Yu F. Validation and Evaluation of GRACE-FO Estimates with In Situ Bottom Pressure Array Measurements in the South China Sea. Remote Sensing. 2023; 15(11):2804. https://doi.org/10.3390/rs15112804
Chicago/Turabian StyleWang, Xuecheng, Hua Zheng, Xiao-Hua Zhu, Ruixiang Zhao, Min Wang, Juntian Chen, Yunlong Ma, Feng Nan, and Fei Yu. 2023. "Validation and Evaluation of GRACE-FO Estimates with In Situ Bottom Pressure Array Measurements in the South China Sea" Remote Sensing 15, no. 11: 2804. https://doi.org/10.3390/rs15112804
APA StyleWang, X., Zheng, H., Zhu, X. -H., Zhao, R., Wang, M., Chen, J., Ma, Y., Nan, F., & Yu, F. (2023). Validation and Evaluation of GRACE-FO Estimates with In Situ Bottom Pressure Array Measurements in the South China Sea. Remote Sensing, 15(11), 2804. https://doi.org/10.3390/rs15112804