Annual and Seasonal Trends of Vegetation Responses and Feedback to Temperature on the Tibetan Plateau since the 1980s
<p>Location of meteorological stations on the Tibetan Plateau.</p> "> Figure 2
<p>Vegetation and air temperature trends on the annual scale. GIMMS-based NDVI and air temperature trends during 1982–2013 (<b>a</b>); air temperature breakpoint detection based on the MK method (<b>b</b>). In (<b>b</b>), the gray dashed line denotes the detected temperature breakpoint, and UF and UB refer to the statistics of forward and backward sequence, respectively; GIMMS-based NDVI trends (<b>c</b>) and regions of significant change (<b>d</b>) during the first warming phase; GIMMS-based NDVI trends (<b>e</b>) and regions of significant change (<b>f</b>) during the second warming phase.</p> "> Figure 3
<p>Vegetation and air temperature trends in spring. GIMMS-based NDVI and air temperature trends during 1982–2013 (<b>a</b>); air temperature breakpoint detection based on the MK method (<b>b</b>). In (<b>b</b>), the gray dashed line denotes the detected temperature breakpoint, and UF and UB refer to the statistics of forward and backward sequence, respectively; GIMMS-based NDVI trends (<b>c</b>) and regions of significant change (<b>d</b>) during the first warming phase. GIMMS-based NDVI trends (<b>e</b>) and regions of significant change (<b>f</b>) during the second warming phase.</p> "> Figure 4
<p>Vegetation and air temperature trends in summer. GIMMS-based NDVI and air temperature trends during 1982–2013 (<b>a</b>); air temperature breakpoint detection based on the MK method (<b>b</b>). In (<b>b</b>), the gray dashed line denotes the detected temperature breakpoint, and UF and UB refer to the statistics of forward and backward sequence, respectively; GIMMS-based NDVI trends (<b>c</b>) and regions of significant change (<b>d</b>) during the first warming phase. GIMMS-based NDVI trends (<b>e</b>) and regions of significant change (<b>f</b>) during the second warming phase.</p> "> Figure 5
<p>Vegetation and air temperature trends in autumn. GIMMS-based NDVI and air temperature trends during 1982–2013 (<b>a</b>); air temperature breakpoint detection based on the MK method (<b>b</b>). In (<b>b</b>), the gray dashed line denotes the detected temperature breakpoint, and UF and UB refer to the statistics of forward and backward sequence, respectively; GIMMS-based NDVI trends (<b>c</b>) and regions of significant change (<b>d</b>) during the first warming phase. GIMMS-based NDVI trends (<b>e</b>) and regions of significant change (<b>f</b>) during the second warming phase.</p> "> Figure 6
<p>Vegetation and air temperature trends in winter. GIMMS-based NDVI and air temperature trends during 1982–2013 (<b>a</b>); air temperature breakpoint detection based on the MK method (<b>b</b>). In (<b>b</b>), the gray dashed line denotes the detected temperature breakpoint, and UF and UB refer to the statistics of forward and backward sequence, respectively; GIMMS-based NDVI trends (<b>c</b>) and regions of significant change (<b>d</b>) during the first warming phase. GIMMS-based NDVI trends (<b>e</b>) and regions of significant change (<b>f</b>) during the second warming phase.</p> "> Figure 7
<p>MODIS-based LST trends during 2000–2021 at annual and seasonal scales. (<b>a</b>–<b>e</b>) denote the LST trends for 2000–2021 in annual, spring, summer, autumn, and winter, respectively; (<b>f</b>–<b>j</b>) denote the LST trends with <span class="html-italic">p</span> < 0.05 for 2000–2021 in annual, spring, summer, autumn, and winter, respectively.</p> "> Figure 8
<p>MODIS-based NDVI trends during 2000–2021 at annual and seasonal scales. (<b>a</b>–<b>e</b>) denote the NDVI trends for 2000–2021 in annual, spring, summer, autumn, and winter, respectively; (<b>f</b>–<b>j</b>) denote the NDVI trends with <span class="html-italic">p</span> < 0.05 for 2000–2021 in annual, spring, summer, autumn, and winter, respectively.</p> "> Figure 9
<p>MODIS-based albedo trends during 2000–2021 at annual and seasonal scales. (<b>a</b>–<b>e</b>) denote the albedo trends for 2000–2021 in annual, spring, summer, autumn, and winter, respectively; (<b>f</b>–<b>j</b>) denote the albedo trends with <span class="html-italic">p</span> < 0.05 for 2000–2021 in annual, spring, summer, autumn, and winter, respectively.</p> "> Figure 10
<p>Land cover change detection on the Tibetan Plateau during 2001–2021.</p> "> Figure 11
<p>Mean NDVI distribution for 2000–2021 after removing different land cover types. L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12, L13, L14, L15, L16, and L17 represent evergreen needleleaf forests, evergreen broadleaf forests, deciduous needleleaf forests, deciduous broadleaf forests, mixed forests, closed shrublands, open shrublands, woody savannas, savannas, grasslands, permanent wetlands, croplands, urban and built-up lands, cropland/natural vegetation, mosaics, permanent snow and ice, barren, and water bodies, respectively. Null means no filtered land cover type.</p> ">
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Meteorological Station Data
2.2.2. Remote Sensing Products
2.3. Methods
3. Results
3.1. Air Temperature and Vegetation Trends during 1982–2013 at Annual and Seasonal Scales
3.1.1. Annual Trends in Air Temperature and Vegetation
3.1.2. Seasonal Trends in Air Temperature and Vegetation
3.1.3. The Spatial and Temporal Responses of NDVI to Air Temperature
3.2. LST, Vegetation, and Albedo Trends during 2000–2021 at Annual and Seasonal Scales
3.2.1. LST Trends at Different Timescales
3.2.2. NDVI Trends at Different Timescales
3.2.3. Albedo Trends at Different Timescales
3.2.4. Vegetation Impacts on LST at Different Time Scales
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerten, D.; Schaphoff, S.; Haberlandt, U.; Lucht, W.; Sitch, S. Terrestrial vegetation and water balance—Hydrological evaluation of a dynamic global vegetation model. J. Hydrol. 2004, 286, 249–270. [Google Scholar] [CrossRef]
- Zuo, Z.; Zhang, R.; Zhao, P. The relation of vegetation over the Tibetan Plateau to rainfall in China during the boreal summer. Clim. Dyn. 2011, 36, 1207–1219. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X.; He, Y.; Bjerke, J.W.; Chen, A.; Ciais, P.; Tømmervik, H.; et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 2020, 1, 14–27. [Google Scholar] [CrossRef]
- Forzieri, G.; Alkama, R.; Miralles, D.G.; Cescatti, A. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science 2017, 356, 1180–1184. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Piao, S.; Li, L.Z.X.; Zhou, L.; Ciais, P.; Wang, T.; Li, Y.; Lian, X.; Wood, E.F.; Friedlingstein, P.; et al. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat. Clim. Chang. 2017, 7, 432–436. [Google Scholar] [CrossRef]
- Zhong, L.; Ma, Y.; Xue, Y.; Piao, S. Climate Change Trends and Impacts on Vegetation Greening over the Tibetan Plateau. J. Geophys. Res. Atmos. 2019, 124, 7540–7552. [Google Scholar] [CrossRef]
- Yu, H.; Luedeling, E.; Xu, J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2010, 107, 22151–22156. [Google Scholar] [CrossRef]
- Zhou, H.K.; Yao, B.Q.; Xu, W.X.; Ye, X.; Fu, J.J.; Jin, Y.X.; Zhao, X.Q. Field evidence for earlier leaf-out dates in alpine grassland on the eastern Tibetan Plateau from 1990 to 2006. Biol. Lett. 2014, 10, 20140291. [Google Scholar] [CrossRef]
- Ding, M.; Zhang, Y.; Liu, L.; Zhang, W.; Wang, Z.; Bai, W. The relationship between NDVI and precipitation on the Tibetan Plateau. J. Geogr. Sci. 2007, 17, 259–268. [Google Scholar] [CrossRef]
- Pang, G.; Wang, X.; Yang, M. Using the NDVI to identify variations in, and responses of, vegetation to climate change on the Tibetan Plateau from 1982 to 2012. Quat. Int. 2017, 444, 87–96. [Google Scholar] [CrossRef]
- Duan, A.; Wu, G.; Liu, Y.; Ma, Y.; Zhao, P. Weather and climate effects of the Tibetan Plateau. Adv. Atmos. Sci. 2012, 29, 978–992. [Google Scholar] [CrossRef]
- Latif, A.; Ilyas, S.; Zhang, Y.; Xin, Y.; Zhou, L.; Zhou, Q. Review on global change status and its impacts on the Tibetan Plateau environment. J. Plant Ecol. 2019, 12, 917–930. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, M.; Motesharrei, S.; Mu, Q.; Kalnay, E.; Li, S. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 2015, 6, 6603. [Google Scholar] [CrossRef] [PubMed]
- Verrelst, J.; Camps-Valls, G.; Muñoz-Marí, J.; Rivera, J.P.; Veroustraete, F.; Clevers, J.G.P.W.; Moreno, J. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review. ISPRS J. Photogramm. Remote Sens. 2015, 108, 273–290. [Google Scholar] [CrossRef]
- Bright, R.M.; Davin, E.; O’halloran, T.; Pongratz, J.; Zhao, K.; Cescatti, A. Local temperature response to land cover and management change driven by non-radiative processes. Nat. Clim. Chang. 2017, 7, 296–302. [Google Scholar] [CrossRef]
- Ge, J.; Guo, W.; Pitman, A.J.; De Kauwe, M.G.; Chen, X.; Fu, C. The Nonradiative Effect Dominates Local Surface Temperature Change Caused by Afforestation in China. J. Clim. 2019, 32, 4445–4471. [Google Scholar] [CrossRef]
- Shen, M.; Piao, S.; Jeong, S.-J.; Zhou, L.; Zeng, Z.; Ciais, P.; Chen, D.; Huang, M.; Jin, C.-S.; Li, L.Z.X.; et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl. Acad. Sci. USA 2015, 112, 9299–9304. [Google Scholar] [CrossRef]
- Zhong, L.; Ma, Y.; Salama, M.S.; Su, Z. Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau. Clim. Chang. 2010, 103, 519–535. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.V.; van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Liu, H.; Zhu, B. NDVI-indicated decline in desertification in China in the past two decades. Geophys. Res. Lett. 2005, 32, L06402. [Google Scholar] [CrossRef]
- Yuan-He, Y.; Shi-Long, P. Variations in grassland vegetation cover in relation to climatic factors on the Tibetan Plateau. Chin. J. Plant Ecol. 2006, 30, 1–8. [Google Scholar] [CrossRef]
- Lin, X.; Wen, J.; Liu, Q.; You, D.; Wu, S.; Hao, D.; Xiao, Q.; Zhang, Z.; Zhang, Z. Spatiotemporal Variability of Land Surface Albedo over the Tibet Plateau from 2001 to 2019. Remote Sens. 2020, 12, 1188. [Google Scholar] [CrossRef]
- Guo, D.; Sun, J.; Yang, K.; Pepin, N.; Xu, Y.; Xu, Z.; Wang, H. Satellite data reveal southwestern Tibetan plateau cooling since 2001 due to snow-albedo feedback. Int. J. Clim. 2020, 40, 1644–1655. [Google Scholar] [CrossRef]
- Salama, M.S.; Van Der Velde, R.; Zhong, L.; Ma, Y.; Ofwono, M.; Su, Z. Decadal variations of land surface temperature anomalies observed over the Tibetan Plateau by the Special Sensor Microwave Imager (SSM/I) from 1987 to 2008. Clim. Chang. 2012, 114, 769–781. [Google Scholar] [CrossRef]
- Luo, D.L.; Jin, H.J.; He, R.X.; Wang, X.F.; Muskett, R.R.; Marchenko, S.S.; Romanovsky, V.E. Characteristics of Water-Heat Exchanges and Inconsistent Surface Temperature Changes at an Elevational Permafrost Site on the Qinghai-Tibet Plateau. J. Geophys. Res. Atmos. 2018, 123, 10057–10075. [Google Scholar] [CrossRef]
- Stroppiana, D.; Antoninetti, M.; Brivio, P.A. Seasonality of MODIS LST over Southern Italy and correlation with land cover, topography and solar radiation. Eur. J. Remote Sens. 2014, 47, 133–152. [Google Scholar] [CrossRef]
- Zhou, Y.; Ran, Y.; Li, X. The contributions of different variables to elevation-dependent land surface temperature changes over the Tibetan Plateau and surrounding regions. Glob. Planet. Chang. 2023, 220, 104010. [Google Scholar] [CrossRef]
- Zhu, W.; Lű, A.; Jia, S. Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products. Remote Sens. Environ. 2013, 130, 62–73. [Google Scholar] [CrossRef]
- Yang, M.; Zhao, W.; Zhan, Q.; Xiong, D. Spatiotemporal Patterns of Land Surface Temperature Change in the Tibetan Plateau Based on MODIS/Terra Daily Product From 2000 to 2018. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6501–6514. [Google Scholar] [CrossRef]
- Yang, K.; Wu, H.; Qin, J.; Lin, C.; Tang, W.; Chen, Y. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Glob. Planet. Chang. 2014, 112, 79–91. [Google Scholar] [CrossRef]
- Li, L.; Yang, S.; Wang, Z.; Zhu, X.; Tang, H. Evidence of Warming and Wetting Climate over the Qinghai-Tibet Plateau. Arct. Antarct. Alp. Res. 2010, 42, 449–457. [Google Scholar] [CrossRef]
- Zhang, Q.; Singh, V.P.; Li, J.; Chen, X. Analysis of the periods of maximum consecutive wet days in China. J. Geophys. Res. Atmos. 2011, 116, D23106. [Google Scholar] [CrossRef]
- Guan, Y.; Zheng, F.; Zhang, X.; Wang, B. Trends and variability of daily precipitation and extremes during 1960–2012 in the Yangtze River Basin, China. Int. J. Clim. 2017, 37, 1282–1298. [Google Scholar] [CrossRef]
- Bachelet, D.; Neilson, R.P.; Lenihan, J.M.; Drapek, R.J. Climate Change Effects on Vegetation Distribution and Carbon Budget in the United States. Ecosystems 2001, 4, 164–185. [Google Scholar] [CrossRef]
- Ma, M.; Frank, V. Interannual variability of vegetation cover in the Chinese Heihe River Basin and its relation to meteorological parameters. Int. J. Remote Sens. 2006, 27, 3473–3486. [Google Scholar] [CrossRef]
- Anyamba, A.; Small, J.L.; Tucker, C.J.; Pak, E.W. Thirty-two Years of Sahelian Zone Growing Season Non-Stationary NDVI3g Patterns and Trends. Remote Sens. 2014, 6, 3101–3122. [Google Scholar] [CrossRef]
- Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. Int. J. Remote Sens. 1986, 7, 1417–1434. [Google Scholar] [CrossRef]
- Zheng, L.; Qi, Y.; Qin, Z.; Xu, X.; Dong, J. Assessing albedo dynamics and its environmental controls of grasslands over the Tibetan Plateau. Agric. For. Meteorol. 2021, 307, 108479. [Google Scholar] [CrossRef]
- Du, J.; Zhao, C.; Shu, J.; Jiaerheng, A.; Yuan, X.; Yin, J.; Fang, S.; He, P. Spatiotemporal changes of vegetation on the Tibetan Plateau and relationship to climatic variables during multiyear periods from 1982–2012. Environ. Earth Sci. 2015, 75, 77. [Google Scholar] [CrossRef]
- Pan, T.; Zou, X.; Liu, Y.; Wu, S.; He, G. Contributions of climatic and non-climatic drivers to grassland variations on the Tibetan Plateau. Ecol. Eng. 2017, 108, 307–317. [Google Scholar] [CrossRef]
- Zhou, D.; Fan, G.; Huang, R.; Fang, Z.; Liu, Y.; Li, H. Interannual variability of the normalized difference vegetation index on the Tibetan Plateau and its relationship with climate change. Adv. Atmos. Sci. 2007, 24, 474–484. [Google Scholar] [CrossRef]
- Wang, X.; Xiao, J.; Li, X.; Cheng, G.; Ma, M.; Che, T.; Dai, L.; Wang, S.; Wu, J. No Consistent Evidence for Advancing or Delaying Trends in Spring Phenology on the Tibetan Plateau. J. Geophys. Res. Biogeosci. 2017, 122, 3288–3305. [Google Scholar] [CrossRef]
- McLeod, A.I. Kendall rank correlation and Mann-Kendall trend test. R Package Kendall 2005, 602, 1–10. Available online: https://cran.r-project.org/web/packages/Kendall/index.html (accessed on 5 April 2023).
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Querin, C.A.S.; Beneditti, C.A.; Machado, N.G.; da Silva, M.J.G.; da Silva Querino, K.A.; dos Santos Neto, L.A.; Biudes, M.S. Spatiotemporal NDVI, LAI, albedo, and surface temperature dynamics in the southwest of the Brazilian Amazon forest. J. Appl. Remote Sens. 2016, 10, 026007. [Google Scholar] [CrossRef]
- Pang, G.; Chen, D.; Wang, X.; Lai, H.-W. Spatiotemporal variations of land surface albedo and associated influencing factors on the Tibetan Plateau. Sci. Total. Environ. 2022, 804, 150100. [Google Scholar] [CrossRef]
- Lian, X.; Jiao, L.; Liu, Z. Saturation response of enhanced vegetation productivity attributes to intricate interactions. Glob. Chang. Biol. 2023, 29, 1080–1095. [Google Scholar] [CrossRef]
- Tian, L.; Zhang, Y.; Zhu, J. Decreased surface albedo driven by denser vegetation on the Tibetan Plateau. Environ. Res. Lett. 2014, 9, 104001. [Google Scholar] [CrossRef]
- Shen, M.; Zhang, G.; Cong, N.; Wang, S.; Kong, W.; Piao, S. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 2014, 189–190, 71–80. [Google Scholar] [CrossRef]
- Du, J.; He, P.; Fang, S.; Liu, W.; Yuan, X.; Yin, J. Autumn NDVI contributes more and more to vegetation improvement in the growing season across the Tibetan Plateau. Int. J. Digit. Earth 2017, 10, 1098–1117. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Q.; Wu, X.; Zhao, L.; Yue, G.; Nan, Z.; Wang, P.; Yi, S.; Zou, D.; Qin, Y.; et al. Vegetation Changes in the Permafrost Regions of the Qinghai-Tibetan Plateau from 1982–2012: Different Responses Related to Geographical Locations and Vegetation Types in High-Altitude Areas. PLoS ONE 2017, 12, e0169732. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, Y.; Wang, Z.; Li, D.; Zhang, Y.; Qin, D.; Li, S. Elevation-dependent decline in vegetation greening rate driven by increasing dryness based on three satellite NDVI datasets on the Tibetan Plateau. Ecol. Indic. 2019, 107, 105569. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, Y.; Dong, J.; Xiao, X. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc. Natl. Acad. Sci. USA 2013, 110, 4309–4314. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhang, H.; Wu, Z.; Zhao, J.; Zhang, Z. Comparison and Evaluation of Annual NDVI Time Series in China Derived from the NOAA AVHRR LTDR and Terra MODIS MOD13C1 Products. Sensors 2017, 17, 1298. [Google Scholar] [CrossRef] [PubMed]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Deriving consistent long-term vegetation information from AVHRR reflectance data using a cover-triangle-based framework. Remote Sens. Environ. 2008, 112, 2938–2949. [Google Scholar] [CrossRef]
- Beck, P.S.; Goetz, S.J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: Ecological variability and regional differences. Environ. Res. Lett. 2011, 6, 045501. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Hu, Q.; Liu, J. Responses of terrestrial water storage to climate variation in the Tibetan Plateau. J. Hydrol. 2020, 584, 124652. [Google Scholar] [CrossRef]
- Hussain, A.; Cao, J.; Ali, S.; Ullah, W.; Muhammad, S.; Hussain, I.; Rezaei, A.; Hamal, K.; Akhtar, M.; Abbas, H.; et al. Variability in Runoff and Responses to Land and Oceanic Parameters in the Source Region of the Indus River. Ecol. Indicators 2022, 140, 109014. [Google Scholar] [CrossRef]
- Ullah, S.; You, Q.; Ullah, W.; Ali, A. Observed Changes in Precipitation in China-Pakistan Economic Corridor during 1980–2016. Atmos. 2018, 210, 1–14. [Google Scholar] [CrossRef]
Parameter | Dataset | Spatial Resolution | Temporal Resolution | Download Links |
---|---|---|---|---|
GIMMS NDVI | Version 5 | 8 km | 15 days | https://climatedataguide.ucar.edu/climate-data/ndvi-normalized-difference-vegetation-index-3rd-generation-nasagfsc-gimms, accessed on 3 October 2022 |
Normalized difference vegetation index (NDVI) | MOD13A2 | 1000 m | 16 days | https://lpdaac.usgs.gov/products/mod13a2v061, accessed on 3 October 2022 |
Land surface temperature (LST) | MOD11A1 | 1000 m | 8 days | https://lpdaac.usgs.gov/products/mod11a2v061, accessed on 3 October 2022 |
Albedo | MCD43A3 | 500 m | daily | https://lpdaac.usgs.gov/products/mcd43a3v061, accessed on 3 October 2022 |
Land Cover Type | MCD12Q1 | 500 m | yearly | https://lpdaac.usgs.gov/products/mcd12q1v061, accessed on 3 October 2022 |
Air temperature | / | / | monthly | https://www.ncdc.noaa.gov/cdo-web, accessed on 3 October 2022 |
Independent Variables | R2 | F-Test | Sig. |
---|---|---|---|
MODIS-based annual NDVI | 0.628 | 33.729 | 0.000 |
MODIS-based spring NDVI | 0.437 | 15.509 | 0.001 |
MODIS-based summer NDVI | 0.581 | 27.779 | 0.000 |
MODIS-based autumn NDVI | 0.412 | 14.040 | 0.001 |
MODIS-based winter NDVI | 0.567 | 26.174 | 0.000 |
MODIS-based annual albedo | 0.000 | 0.004 | 0.950 |
MODIS-based spring albedo | 0.008 | 0.156 | 0.697 |
MODIS-based summer albedo | 0.490 | 19.188 | 0.000 |
MODIS-based autumn albedo | 0.030 | 0.608 | 0.445 |
MODIS-based winter albedo | 0.050 | 1.061 | 0.315 |
MODIS-based annual NDVI | 0.628 | 33.729 | 0.000 |
MODIS-Based LST | MODIS-Based NDVI | MODIS-Based Albedo | ||
---|---|---|---|---|
Partial Correlation Coefficient | Two-Tailed Test | Partial Correlation Coefficient | Two-Tailed Test | |
annual | −0.478 | 0.028 | −0.603 | 0.004 |
spring | 0.467 | 0.033 | −0.856 | 0.000 |
summer | −0.283 | 0.214 | −0.277 | 0.223 |
autumn | −0.436 | 0.048 | −0.883 | 0.000 |
winter | 0.041 | 0.858 | −0.803 | 0.000 |
Filtered Land Cover | Trend | R2 | Sig. | Relative Impact (%) |
---|---|---|---|---|
Evergreen Needleleaf Forests | 10.839 | 0.625 | 0.000 | 0.324 |
Evergreen Broadleaf Forests | 10.826 | 0.624 | 0.000 | 0.204 |
Deciduous Needleleaf Forests | 10.804 | 0.628 | 0.000 | 0.000 |
Deciduous Broadleaf Forests | 10.798 | 0.627 | 0.000 | 0.056 |
Mixed Forests | 10.828 | 0.622 | 0.000 | 0.222 |
Closed Shrublands | 10.804 | 0.628 | 0.000 | 0.000 |
Open Shrublands | 10.814 | 0.628 | 0.000 | 0.093 |
Woody Savannas | 10.785 | 0.621 | 0.000 | 0.176 |
Savannas | 10.782 | 0.626 | 0.000 | 0.204 |
Grasslands | 10.986 | 0.883 | 0.000 | 1.685 |
Permanent Wetlands | 10.802 | 0.628 | 0.000 | 0.019 |
Croplands | 10.787 | 0.628 | 0.000 | 0.157 |
Urban and Built-Up Lands | 10.809 | 0.628 | 0.000 | 0.046 |
Cropland/Natural Vegetation Mosaics | 10.804 | 0.628 | 0.000 | 0.000 |
Permanent Snow and Ice | 10.834 | 0.625 | 0.000 | 0.278 |
Barren | 11.857 | 0.518 | 0.000 | 9.746 |
Water Bodies | 10.293 | 0.599 | 0.000 | 4.730 |
Null | 10.804 | 0.628 | 0.000 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Ma, Y.; Darvishzadeh, R.; Han, C. Annual and Seasonal Trends of Vegetation Responses and Feedback to Temperature on the Tibetan Plateau since the 1980s. Remote Sens. 2023, 15, 2475. https://doi.org/10.3390/rs15092475
Wang F, Ma Y, Darvishzadeh R, Han C. Annual and Seasonal Trends of Vegetation Responses and Feedback to Temperature on the Tibetan Plateau since the 1980s. Remote Sensing. 2023; 15(9):2475. https://doi.org/10.3390/rs15092475
Chicago/Turabian StyleWang, Fangfang, Yaoming Ma, Roshanak Darvishzadeh, and Cunbo Han. 2023. "Annual and Seasonal Trends of Vegetation Responses and Feedback to Temperature on the Tibetan Plateau since the 1980s" Remote Sensing 15, no. 9: 2475. https://doi.org/10.3390/rs15092475
APA StyleWang, F., Ma, Y., Darvishzadeh, R., & Han, C. (2023). Annual and Seasonal Trends of Vegetation Responses and Feedback to Temperature on the Tibetan Plateau since the 1980s. Remote Sensing, 15(9), 2475. https://doi.org/10.3390/rs15092475