Drag and Attitude Control for the Next Generation Gravity Mission
"> Figure 1
<p>Principle of the low-low satellite-to-satellite tracking technique.</p> "> Figure 2
<p>Arrangement of two satellite pairs (S1-S2, S3-S4) in “Bender Constellation”.</p> "> Figure 3
<p>Requirements (threshold and goal) on the stochastic measurement error of Δ<span class="html-italic">d</span>.</p> "> Figure 4
<p>Requirements (threshold and goal) on the stochastic measurement error of Δ<span class="html-italic">a</span><sub>D</sub>.</p> "> Figure 5
<p>Combined requirements on Δ<span class="html-italic">a</span><sub>D</sub> and on the second temporal derivative of Δ<span class="html-italic">d</span>.</p> "> Figure 6
<p>Contributors to the acceleration <b><span class="html-italic">a</span></b> nominally measured by the accelerometer.</p> "> Figure 7
<p>Illustration of the errors affecting <b><span class="html-italic">a</span></b><sub>meas</sub>.</p> "> Figure 8
<p>Accelerometer reference frame (X<sub>A</sub>, Y<sub>A</sub>, Z<sub>A</sub>) to SSRF (X<sub>SS</sub>, Y<sub>SS</sub>, Z<sub>SS</sub>) misalignment giving rise to the pitch/yaw-dependent error term δ<span class="html-italic">a</span><sub>D</sub>.</p> "> Figure 9
<p>Error tree for the measurement of the non-gravitational differential acceleration along the satellite’s CoM-to-CoM direction.</p> "> Figure 10
<p>Core of MicroSTAR with the cubic PM surrounded by 6 identical electrode plates.</p> "> Figure 11
<p>Worst-case analysis (WCA) of the acceleration measurement noise for linear and angular accelerations for the science output (SCI) or for DFAOCS outputs. Performance is shown for the X axis (less sensitive) and for Y/Z axes (ultra-sensitive) of the accelerometer reference frame.</p> "> Figure 12
<p>Time history and amplitude spectral density of the drag force along the X-axis of GOCE measured in flight (black line) and computed by the E2E simulator (red line).</p> "> Figure 13
<p>Time history (<b>above</b>) and amplitude spectral density (<b>below</b>) of the drag force along the X-axis of NGGM computed with and without the Hickey’s atmospheric model.</p> "> Figure 14
<p>Drag force module over 14 years from 2027 at 396 km and 492 km altitude, computed with 50th percentile (<b>left</b>) and 95th percentile (<b>right</b>) on F<sub>10.7</sub> and A<sub>p</sub> prediction.</p> "> Figure 15
<p>Drag acceleration components over 2 orbits at 396 km and 492 km, computed at the epoch of maximum solar activity with 95th percentile on F<sub>10.7</sub> and A<sub>p</sub> prediction.</p> "> Figure 16
<p>Amplitude spectral density of the drag acceleration components at 396 km and 492 km, computed at the epoch of maximum solar activity with 95th percentile on F<sub>10.7</sub> and A<sub>p</sub> prediction. The control requirement (magenta horizontal line, taken from <a href="#remotesensing-14-02916-t004" class="html-table">Table 4</a>′s control requirement for the spectral densities of the linear accelerations in the MBW) is abundantly exceeded below 50 mHz by all components.</p> "> Figure 17
<p>Nominal non-gravitational acceleration measurement performance (green line) in the case of perfect matching of control requirements (see <a href="#sec3dot3-remotesensing-14-02916" class="html-sec">Section 3.3</a>) and realistic conservative allocations for the values of the parameters subject to calibration (see <a href="#sec3dot1-remotesensing-14-02916" class="html-sec">Section 3.1</a>), in comparison to mission performance requirements (light blue) and goals (magenta). Shown in dark blue, red, yellow, and purple are the (I), (C), (S), and (T) uncertainty contributors to the overall budgeted performance, respectively.</p> "> Figure 18
<p>Performance for scenarios with degraded drag-free control (either no drag-free control along the flight direction, satellite X axis, or along any of the axes) at the two orbital altitude regimes considered as 396 and 492 km.</p> "> Figure 19
<p>Coarse attitude control effect in non-gravitational acceleration performance (green line) in the case of perfect matching of drag-free control requirements in the three axes, at any altitude where that control is feasible.</p> "> Figure 20
<p>Performance for the scenarios with both coarse pointing and degraded drag-free performances at h<sub>1</sub> = 492 km and h<sub>2</sub> = 396 km, overlaid to the cases with full drag-free control at any altitude combined with fine and coarse pointing.</p> "> Figure 21
<p>Degree RMS of the error in the gravity field coefficients in terms of EWH resulting from the laser interferometer, the accelerometer, and associated drag-free and pointing regimes. The curves for X-axis and full drag-free for the coarse pointing (green and light blue lines) are overlapping.</p> ">
Abstract
:1. Introduction
2. NGGM Objectives, Measurement Technique, and Fundamental Observables
2.1. User’s Need and Objectives of the Next Generation Gravity Mission
2.2. The Satellite-To-Satellite Tracking Technique and the NGGM Scenario
2.3. NGGM Fundamental Observables and Measurement Requirements
3. Drag and Attitude Control Role in the Measurement of the Non-Gravitational Accelerations
3.1. The Measurement of the Non-Gravitational Accelerations and the Main Error Terms
- Accelerometer Intrinsic Errors (I): sensor intrinsic noise and bias, parasitic forces on the PM originated internally to the accelerometer (gold-wire stiffness, thermo-molecular forces, etc.).
- Accelerometer-Satellite Coupling Errors (C): errors originated from the interactions of the accelerometer scale factor, internal misalignments, quadratic factors with residual non-gravitational accelerations, and the attitude dynamics of the spacecraft.
- Satellite Generated Errors (S): errors produced by sources dependent only on the spacecraft (self-gravity forces, stability of the accelerometer-CoM relative position, etc.).
- Transformation Errors (T): errors originated by the projection of the measured acceleration along the CoM-to-CoM direction.
3.2. The Candidate Accelerometer for NGGM
3.3. Drag and Attitude Control Requirements
3.4. Drag Environment on NGGM Reference Orbits
- The atmospheric models utilized within the NGGM system study are:
- NRLMSISE-00 for neutral density estimation/predictions (consistent with ECSS E ST 10 04C Rev1 Space Environment standard);
- HWM-14 for winds;
- Hickey’s model for the high-frequency density/wind fluctuations [30].
4. Drag and Attitude Control Impacts on Mission Performance
4.1. Error Budget for the Non-Gravitational Acceleration Measurement
- no drag-free control along any of the axes;
- drag-free control along the flight direction (satellite X axis) only, no control along Y and Z axes.
4.2. Implications on the Gravity Field Retrieval
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pail, R.; Bingham, R.; Braitenberg, C.; Dobslaw, H.; Eicker, A.; Güntner, A.; Horwath, M.; Ivins, E.; Longuevergne, L.; Panet, I.; et al. Science and user needs for observing global mass transport to understand global change and to benefit society. Surv. Geophys. 2015, 36, 743–772. [Google Scholar] [CrossRef]
- Baker, R. Orbit determination from range and range rate data. Technical report. In Proceedings of the Semiannual Meeting of American Rocket Society, Los Angeles, CA, USA, 9–12 May 1960. [Google Scholar]
- Wolff, M. Direct measurement of the Earth’s gravitational potential using a satellite pair. J. Geophys. Res. 1969, 74, 5295–5300. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE measurements of mass variability in the earth system. Science 2004, 305, 503–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landerer, F.W.; Flechtner, F.M.; Save, H.; Webb, F.H.; Bandikova, T.; Bertiger, W.I.; Bettadpur, S.V.; Byun, S.H.; Dahle, C.; Dobslaw, H.; et al. Extending the global mass change data record: GRACE Follow-On instrument and science data performance. Geophys. Res. Lett. 2020, 47, e2020GL088306. [Google Scholar] [CrossRef]
- Floberghagen, R.; Fehringer, M.; Lamarre, D.; Muzi, D.; Frommknecht, B.; Steiger, C.; Pieiro, J.; da Costa, A. Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. J. Geod. 2011, 85, 749–758. [Google Scholar] [CrossRef]
- Brockmann, J.M.; Schubert, T.; Schuh, W.-D. An improved model of the Earth’s static gravity field solely derived from reprocessed GOCE data. Surv. Geophys. 2021, 42, 277–316. [Google Scholar] [CrossRef]
- Cesare, S.; Allasio, A.; Anselmi, A.; Dionisio, S.; Mottini, S.; Parisch, M.; Massotti, L.; Silvestrin, P. The European way to gravimetry: From GOCE to NGGM. Adv. Space Res. 2015, 57, 1047–1064. [Google Scholar] [CrossRef]
- Haagmans, R.; Siemes, C.; Massotti, L.; Carraz, O.; Silvestrin, P. ESA’s Next-Generation Gravity Mission Concepts. Rend. Lincei. Sci. Fis. E Nat. 2020, 31, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Reubelt, T.; Sneeuw, N.; Iran Pour, S.; Pail, R.; Gruber, T.; Murböck, M.; Daras, I.; Visser, P.; Texeira de Encarnação, J.; van Dam, T.; et al. The ESA project SC4MGV Assessment of Satellite Constellations for Monitoring the Variations in Earth’s Gravity—Overview, objectives and first results. In Proceedings of the EGU General Assembly 2014, Vienna, Austria, 27 April–2 May 2014; p. 3758. [Google Scholar]
- Daras, I.; Visser, P.; Sneeuw, N.; van Dam, T.; Pail, R.; Gruber, T.; Tabibi, S.; Chen, Q.; Liu, W.; Tourian, M.; et al. Impact of orbit design choices on the gravity field retrieval of Next Generation Gravity Missions—Insights on the ESA-ADDCON project. In Proceedings of the 19th EGU General Assembly, EGU2017, Vienna, Austria, 23–28 April 2017; p. 8530. [Google Scholar]
- Dionisio, S.; Anselmi, A.; Cesare, S.; Novara, C.; Colangelo, L.; Massotti, L.; Silvestrin, P. System and AOCS challenges for the design consolidation of the next generation gravity mission. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Kissimmee, FL, USA, 8–12 January 2018. [Google Scholar] [CrossRef] [Green Version]
- Smirnova, M.; Mingo, A.; Schein, J.; Smirnov, P.; Bosch, E.; Massotti, L. Test Campaign on the novel Variable Isp Radio Frequency Mini Ion Engine. In Proceedings of the 36th International Electric Propulsion Conference, Vienna, Austria, 15–20 September 2019. IEPC-2019-A-574. [Google Scholar]
- Massotti, L.; Gonzalez del Amo, J.; Silvestrin, P.; Krejci, D.; Reissner, A.; Seifert, B. The Next Generation Gravity Mission and the qualification of the Indium-fed mN-FEEP thruster. CEAS Space J. 2021, 14, 109–124. [Google Scholar] [CrossRef]
- Nicklaus, K.; Herding, M.; Wang, X.; Beller, N.; Fitzau, O.; Giesberts, M.; Herper, M.; Barwood, G.P.; Williams, R.A.; Gill, P.; et al. High stability laser for next generation gravity missions. In Proceedings of the International Conference on Space Optics—ICSO 2014, Tenerife, Spain, 6–10 October 2014; SPIE: Bellingham, WA, USA, 2017; Volume 10563, pp. 808–815. [Google Scholar] [CrossRef] [Green Version]
- Dionisio, S.; Anselmi, A.; Cesare, S.; Massotti, L.; Silvestrin, P. The Next Generation Gravity Mission challenges, consolidation of the system concepts and technological innovations. In Proceedings of the 15th International Conference on Space Operations, Marseille, France, 28 May–1 June 2018. [Google Scholar] [CrossRef]
- Nicklaus, K.; Cesare, S.; Massotti, L.; Bonino, L.; Mottini, S.; Pisani, M.; Silvestrin, P. Laser metrology concept consolidation for NGGM. In Proceedings of the International Conference on Space Optics 2018, Chania, Greece, 9–12 October 2018. [Google Scholar] [CrossRef]
- Visser, P.; Bettadpur, S.; Chambers, D.; Diament, M.; Gruber, T.; Hanna, E.; Rodell, M.; Wiese, D.; Labreque, J.; Johnson, T.; et al. Towards a Sustained Observing System for Mass Transport to Understand Global Change and to Benefit Society; NASA/ESA Interagency Gravity Science Working Group (IGSWG): Delft, The Netherlands, 2016; Doc. nr.: TUDIGSWG-2016-01; Available online: http://www.deos.tudelft.nl/AS/pieter/IGSWG/IGSWG-Report.pdf (accessed on 23 September 2021).
- National Academies of Sciences, Engineering, and Medicine. Thriving on Our Changing Planet—Decadal Survey for Earth Science and Applications from Space; The National Academies Press: Washington, DC, USA, 2017. [Google Scholar]
- Flechtner, F.; Neumayer, K.H.; Dahle, C.; Dobslaw, H.; Fagiolini, E.; Raimondo, J.-C.; Güntner, A. What can be expected from the GRACE-FO laser ranging interferometer for earth science applications? Surv. Geophys. 2016, 37, 453–470. [Google Scholar] [CrossRef] [Green Version]
- Bender, P.L.; Wiese, D.N.; Nerem, R.S. A possible dual-GRACE mission with 90 and 63 inclination orbits. In Proceedings of the 3rd International Symposium on Formation Flying, Missions and Technologies, Noordwijk, The Netherlands, 23–25 April 2008. [Google Scholar]
- Daras, I.; Pail, R. Treatment of temporal aliasing effects in the context of next generation satellite gravimetry missions. J. Geophys. Res. Solid Earth 2017, 122, 7343–7362. [Google Scholar] [CrossRef]
- Massotti, L.; Siemes, C.; March, G.; Haagmans, R.; Silvestrin, P. Next Generation Gravity Mission Elements of the Mass Change and Geoscience International Constellation: From Orbit Selection to Instrument and Mission Design. Remote Sens. 2021, 13, 3935. [Google Scholar] [CrossRef]
- Murböck, M.; Pail, R.; Daras, I.; Gruber, T. Optimal orbits for temporal gravity recovery regarding temporal aliasing. J. Geod. 2014, 88, 113–126. [Google Scholar] [CrossRef]
- Sneeuw, N.; Flury, J.; Rummel, R. Science Requirements on Future Missions and Simulated Mission Scenarios. In Future Satellite Gravimetry and Earth Dynamics; Flury, J., Rummel, R., Eds.; Springer: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
- Abich, K.; Abramovici, A.; Amparan, B.; Baatzsch, A.; Okihiro, B.B.; Barr, D.C.; Zimmermann, M. On orbit performance of the GRACE Follow-On Laser Ranging Interferometer. Phys. Rev. Lett. 2019, 123, 031101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kornfeld, R.P.; Arnold, B.W.; Gross, M.A.; Dahya, N.T.; Klipstein, W.M.; Gath, P.F.; Bettadpur, S. GRACE-FO: The Gravity Recovery and Climate Experiment Follow-On Mission. J. Spacecr. Rocket. 2019, 56, 3. [Google Scholar] [CrossRef]
- Touboul, P.; Foulon, B.; Rodrigues, M.; Marque, J.P. In orbit nano-g measurements, lessons for future space missions. Aerosp. Sci. Technol. 2004, 8, 431–441. [Google Scholar] [CrossRef]
- Christophe, B.; Boulanger, D.; Foulon, B.; Huynh, P.-A.; Lebat, V.; Liorzou, F.; Perrot, E. A new generation of ultra-sensitive electrostatic accelerometers for GRACE Follow-on and towards the next generation gravity missions. Acta Astronaut. 2015, 117, 1–7. [Google Scholar] [CrossRef]
- Hickey, M.P. An Engineering Model for the Simulation of Small-Scale Thermospheric Density Variation for Orbital Inclinations Greater Than 40 Degrees; NASA Contractor Report 201140; NASA: Washington, DC, USA, 1996.
- Niehuss, K.O.; Euler, H.C.; Vaughan, W.W. Statistical Technique for Intermediate and Long-Range Estimation of 13-Month Smoothed Solar Flux and Geomagnetic Index; NASA Technical Memorandum 4759; NASA: Washington, DC, USA, 1996.
- Wegener, H.; Müller, V.; Heinzel, G.; Misfeldt, M. Tilt-to-Length Coupling in the GRACE Follow-On Laser Ranging Interferometer. J. Spacecr. Rocket. 2020, 57, 1362–1372. [Google Scholar] [CrossRef]
- Kaula, W.M. A Theory of Satellite Geodesy: Applications of Satellites to Geodesy; Blaisdel Publishing Company: Waltham, MA, USA, 1966. [Google Scholar]
- Visser, P.N.A.M. The Use of Satellites in Gravity Field Determination and Model Adjustment. Ph.D. Thesis, Delft University, Delft, The Netherlands, 1992. Available online: https://repository.tudelft.nl/islandora/object/uuid%3A957b041a-8e2c-4ad7-be73-214c0727df01 (accessed on 17 June 2022).
- Visser, P.N.A.M. Low-Low Satellite-to-Satellite Tracking: A Comparison between Analytical Linear Orbit Perturbation Theory and Numerical Integration. J. Geod. 2005, 79, 160–166. [Google Scholar] [CrossRef]
- Thompson, P.F.; Bettadpur, S.V.; Tapley, B.D. Impact of Short Period, Non-Tidal, Temporal Mass Variability on GRACE Gravity Estimates. Geophys. Res. Lett. 2004, 31, L06619. [Google Scholar] [CrossRef]
- Wiese, D.N.; Visser, P.N.A.M.; Nerem, R.S. Estimating Low Resolution Gravity Fields at Short Time Intervals to Reduce Temporal Aliasing Errors. Adv. Space Res. 2011, 48, 1094–1107. [Google Scholar] [CrossRef]
- Dobslaw, H.; Bergmann-Wolf, I.; Dill, R.; Forootan, E.; Klemann, V.; Kusche, J.; Sasgen, I. The Updated ESA Earth System Model for Future Gravity Mission Simulation Studies. J. Geod. 2015, 89, 505–513. [Google Scholar] [CrossRef]
- Minkang, C.; Ries, J. The Unexpected Signal in GRACE Estimates of C_{20}. J. Geod. 2017, 91, 897–914. [Google Scholar] [CrossRef]
- Loomis, B.D.; Rachlin, K.E.; Wiese, D.N.; Landerer, F.W.; Luthcke, S.B. Replacing GRACE/GRACE-FO with Satellite Laser Ranging: Impacts on Antarctic Ice Sheet Mass Change. Geophys. Res. Lett. 2020, 47, 1–7. [Google Scholar] [CrossRef]
Thematic Field | Geophysical Phenomena/ Events/Quantities | Time Scale 1 | Resolution | Gravity Signal Measurement Accuracy (cm of EWH 3) | ||
---|---|---|---|---|---|---|
km | SH 2 Max. Degree | Threshold | Goal | |||
Hydrology | • Ground-water storage | D | 280 | SHDmax = 71 | 6 cm | 0.6 cm |
L | 150 | SHDmax = 133 | 5 cm/yr | 0.5 cm/yr | ||
• Soil moisture | M | 260 | SHDmax = 77 | 4.8 cm | 0.48 cm | |
L | 150 | SHDmax = 133 | 5 cm/yr | 0.5 cm/yr | ||
• Extreme events (e.g., drought, flood) | D | 280 | SHDmax = 71 | 6 cm | 0.6 cm | |
L | 150 | SHDmax = 133 | 5 cm/yr | 0.5 cm/yr | ||
• Water balance closure | M | 260 | SHDmax = 77 | 4.8 cm | 0.48 cm | |
L | 150 | SHDmax = 133 | 5 cm/yr | 0.5 cm/yr | ||
• Global change impact on water cycle | M | 260 | SHDmax = 77 | 4.8 cm | 0.48 cm | |
L | 150 | SHDmax = 133 | 5 cm/yr | 0.5 cm/yr | ||
Cryosphere | • Mass balance of ice sheets and glaciers | M | 150 | SHDmax = 133 | 50 cm | 5 cm |
L | 130 | SHDmax = 154 | 15 cm/yr | 1.5 cm/yr | ||
• Contribution to global, regional sea level | M | 150 | SHDmax = 133 | 50 cm | 5 cm | |
L | 130 | SHDmax = 154 | 15 cm/yr | 1.5 cm/yr | ||
• Glacial isostatic adjustment (GIA) | M | 150 | SHDmax = 133 | 50 cm | 5 cm | |
L | 130 | SHDmax = 154 | 15 cm/yr | 1.5 cm/yr | ||
Oceanography | • Sea level change | M | 250 | SHDmax = 80 | 5.5 cm | 0.55 cm |
L | 180 | SHDmax = 111 | 1.8 cm/yr | 0.18 cm/yr | ||
• Ocean bottom pressure | M | 250 | SHDmax = 80 | 5.5 cm | 0.55 cm | |
L | 180 | SHDmax = 111 | 1.8 cm/yr | 0.18 cm/yr | ||
• Antarctic circumpolar current and meridional overturning circulation variability | M | 250 | SHDmax = 80 | 5.5 cm | 0.55 cm | |
L | 180 | SHDmax = 111 | 1.8 cm/yr | 0.18 cm/yr | ||
• Tidal models | D | 400 | SHDmax = 50 | 5 cm | 0.5 cm | |
L | 180 | SHDmax = 111 | 1.8 cm/yr | 0.18 cm/yr | ||
• Heat and mass observations | D | 400 | SHDmax = 50 | 5 cm | 0.5 cm | |
L | 180 | SHDmax = 111 | 1.8 cm/yr | 0.18 cm/yr | ||
• Ocean circulation models | M | 250 | SHDmax = 80 | 5.5 cm | 0.55 cm | |
L | 180 | SHDmax = 111 | 1.8 cm/yr | 0.18 cm/yr | ||
Solid Earth | • Natural hazards | D | 300 | SHDmax = 67 | 6 cm | 0.6 cm |
L | 150 | SHDmax = 133 | 5 cm/yr | 0.5 cm/yr | ||
• Evolution of Earth’s crust under external or internal forcing | M | 180 | SHDmax = 111 | 18 cm | 1.8 cm | |
L | 150 | SHDmax = 133 | 5 cm/yr | 0.5 cm/yr | ||
• Natural resources exploitation | D | 300 | SHDmax = 67 | 6 cm | 0.6 cm | |
L | 150 | SHDmax = 133 | 5 cm/yr | 0.5 cm/yr | ||
• Deep interior properties and dynamics | M | 180 | SHDmax = 111 | 18 cm | 1.8 cm | |
L | 150 | SHDmax = 133 | 5 cm/yr | 0.5 cm/yr |
Parameter | First Pair (Polar Pair) | Second Pair (Inclined Pair) |
---|---|---|
Mean orbit altitude | h1 = 492 km | h2 = 396 km |
Orbit inclination | i1 = 89° | i2 = 65° |
Ground track sub-cycles | 5, 26, 31 days | 5, 13, 18, 31 days |
Ground track homogeneity 1 | hl = 1.397 | hl = 1.172 |
Ground track shift in longitude after the shorter sub-cycle | Δ(Lon) = −0.790° | Δ(Lon) = −1.499° |
Y or Z axes | X axis | ||
---|---|---|---|
Bias/Noise | By construction (DC value) | 1.5 × 10−7 m/s2 | 2 × 10−6 m/s2 |
After calibration (DC value) | <1.5 × 10−7 m/s2 | ||
In MBW | 3.1 × 10−12 m/s2/√Hz | 6.2 × 10−12 m/s2/√Hz | |
Scale Factor | By construction (DC value) | 1.2 × 10−2 | |
After calibration (DC value) | 3 × 10−4 | <1.2 × 10−2 | |
In MBW | 10−7 1/√Hz | ||
Quadratic Factor | By construction (DC value) | 78 s2/m | |
After calibration (DC value) | 10 s2/m (for all axes) | ||
In MBW | 1.1 × 10−2 s2/m/√Hz | ||
Internal Misalignment | By construction (DC value) | 148 µrad | 172 µrad |
In MBW | 0.1 µrad/√Hz |
Controlled Quantity | Requirement | Note |
---|---|---|
Non-gravitational linear acceleration of satellite’s CoM | ≤10−6 m/s² ≤5 × 10−9 m/s2/√Hz | Peak-to-peak limit, all axes ASD limit in MBW, all axes |
Angular acceleration of the satellite around the CoM | ≤10−6 rad/s² ≤10−8 rad/s2/√Hz | Peak-to-peak limit, all axes ASD limit in MBW, all axes |
Angular rate of the satellite around the CoM | ≤10−4 rad/s ≤1.2 × 10−3 rad/s ≤10−6 rad/s/√Hz | Peak-to-peak limit, X and Z axes Peak-to-peak limit, Y (pitch) axis ASD limit in MBW, all axes |
Satellite X-axis pointing in the satellite-to-satellite direction | ≤2 × 10−5 rad ≤10−5 rad/√Hz | Peak-to-peak limit, around Y and Z 1 ASD limit in MBW, all axes |
Pointing | Drag Free | HIS Max. Res. [SHD, km] |
---|---|---|
Fine | Full | 85 235 |
Fine | X-axis | 85 235 |
Fine | None | 81 245 |
Coarse | Full | 80 250 |
Coarse | X-axis | 80 250 |
Coarse | None | 75 267 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cesare, S.; Dionisio, S.; Saponara, M.; Bravo-Berguño, D.; Massotti, L.; Teixeira da Encarnação, J.; Christophe, B. Drag and Attitude Control for the Next Generation Gravity Mission. Remote Sens. 2022, 14, 2916. https://doi.org/10.3390/rs14122916
Cesare S, Dionisio S, Saponara M, Bravo-Berguño D, Massotti L, Teixeira da Encarnação J, Christophe B. Drag and Attitude Control for the Next Generation Gravity Mission. Remote Sensing. 2022; 14(12):2916. https://doi.org/10.3390/rs14122916
Chicago/Turabian StyleCesare, Stefano, Sabrina Dionisio, Massimiliano Saponara, David Bravo-Berguño, Luca Massotti, João Teixeira da Encarnação, and Bruno Christophe. 2022. "Drag and Attitude Control for the Next Generation Gravity Mission" Remote Sensing 14, no. 12: 2916. https://doi.org/10.3390/rs14122916