A Weighted Mean Temperature Model with Nonlinear Elevation Correction Using China as an Example
<p>The distribution of the study area and the radiosonde stations (RS) used for modeling.</p> "> Figure 2
<p>Tm profile of 35° N (<b>a</b>) and 105° E (<b>b</b>).</p> "> Figure 3
<p>Fitting effect of linear function model (<b>a</b>) and its residual (<b>b</b>).</p> "> Figure 4
<p>Fitting results (<b>a</b>) and residuals (<b>b</b>) of the model with nonlinear elevation correction.</p> "> Figure 5
<p>SD distribution (linear (<b>a</b>) and nonlinear (<b>b</b>)) and RMS distribution (linear (<b>c</b>) and nonlinear (<b>d</b>)) of all grid points in the study area.</p> "> Figure 6
<p>Time series of coefficients of the model with nonlinear elevation correction from 2014 to 2018 (α<sub>1</sub> (<b>a</b>), α<sub>2</sub> (<b>b</b>), α<sub>3</sub> (<b>c</b>), α<sub>4</sub> (<b>d</b>), α<sub>5</sub> (<b>e</b>)): 55° N, 110° E.</p> "> Figure 7
<p>Seasonal (<b>a</b>) and diurnal (<b>b</b>) changes in the values estimated by the model.</p> "> Figure 8
<p>Fitting results (<b>a</b>,<b>c</b>,<b>e</b>) and model residuals (<b>b</b>,<b>d</b>,<b>f</b>) (20° N, 110° E); (35° N, 110° E); and (55° N, 110° E).</p> "> Figure 9
<p>The average bias (<b>a</b>), SD (<b>c</b>), and RMS (<b>e</b>) distribution of CTm-h; the average bias (<b>b</b>), SD (<b>d</b>), an RMS (<b>f</b>) distribution of GPT2w.</p> "> Figure 10
<p>The average bias (<b>a</b>), SD (<b>b</b>), and RMS (<b>c</b>) of the CTm-h model verified by the radiosonde stations.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Research Area
2.2. Research Data
3. Establishment of Tm Model (CTm-h) with Nonlinear Elevation Correction
3.1. Problems with Existing Tm Models
3.2. Establishment of Tm Model with Nonlinear Elevation Correction (CTm-h)
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barindelli, S.; Realini, E.; Venuti, G.; Fermi, A.; Gatti, A. Detection of water vapor time variations associated with heavy rain in northern Italy by geodetic and low-cost GNSS receivers. Earth Planets Space 2018, 70, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhang, H.; Liang, H.; Lou, Y.; Cai, Y.; Cao, Y.; Zhou, Y.; Liu, W. On the suitability of ERA5 in hourly GPS precipitable water vapor retrieval over China. J. Geod. 2019, 93, 1897–1909. [Google Scholar] [CrossRef]
- Zhao, Q.; Yao, Y.; Yao, W.; Li, Z. Real-time precise point positioning-based zenith tropospheric delay for precipitation forecasting. Sci. Rep. 2018, 8, 7939. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.L.; Herring, T.A.; Shapiro, I.I.; Rogers, A.; Elgered, G. Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci. 1985, 20, 1593–1607. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. Atmos. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Li, L.; Wu, S.; Wang, X.; Tian, Y.; He, C.; Zhang, K. Seasonal Multifactor Modelling of Weighted-Mean Temperature for Ground-Based GNSS Meteorology in Hunan, China. Adv. Meteorol. 2017, 2017, 1–13. [Google Scholar] [CrossRef]
- Zhang, W.; Lou, Y.; Huang, J.; Liu, W. A refined regional empirical pressure and temperature model over China. Adv. Space Res. 2018, 62, 1065–1074. [Google Scholar] [CrossRef]
- Zhu, H.; Huang, G.; Zhang, J. A regional weighted mean temperature model that takes into account climate differences: Taking Shaanxi, China as an example. Acta Geod. Cartogr. Sin. 2021, 50, 356–367. [Google Scholar]
- Boehm, J.; Heinkelmann, R.; Schuh, H. Short Note: A global model of pressure and temperature for geodetic applications. J. Geod. 2007, 81, 679–683. [Google Scholar] [CrossRef]
- Lagler, K.; Schindelegger, M.; Bohm, J.; Krasna, H.; Nilsson, T. GPT2: Empirical slant delay model for radio space geodetic techniques. Geophys. Res. Lett. 2013, 40, 1069–1073. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Zhang, B.; Xu, C.; Yan, F. Improved one/multi-parameter models that consider seasonal and geographic variations for estimating weighted mean temperature in ground-based GPS meteorology. J. Geod. 2013, 88, 273–282. [Google Scholar] [CrossRef]
- Yao, Y.; Zhu, S.; Yue, S. A globally applicable, season-specific model for estimating the weighted mean temperature of the atmosphere. J. Geod. 2012, 86, 1125–1135. [Google Scholar] [CrossRef]
- Yao, Y.B.; Zhang, B.; Yue, S.Q.; Xu, C.Q.; Peng, W.F. Global empirical model for mapping zenith wet delays onto precipitable water. J. Geod. 2013, 87, 439–448. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, C.; Zhang, B.; Cao, N. GTm-III: A new global empirical model for mapping zenith wet delays onto precipitable water vapour. Geophys. J. Int. 2014, 197, 202–212. [Google Scholar] [CrossRef] [Green Version]
- Böhm, J.; Möller, G.; Schindelegger, M.; Pain, G.; Weber, R. Development of an improved empirical model for slant delays in the troposphere (GPT2w). GPS Solut. 2014, 19, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Guo, J.; Meng, X.; Shi, J.; Xu, Y.; Zhang, D. Determination of Weighted Mean Temperature (Tm) Lapse Rate and Assessment of Its Impact on Tm Calculation. IEEE Access 2019, 7, 155028–155037. [Google Scholar] [CrossRef]
- Yang, F.; Guo, J.; Meng, X.; Shi, J.; Zhang, D.; Zhao, Y. An improved weighted mean temperature (Tm) model based on GPT2w with Tm lapse rate. GPS Solut. 2020, 24, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Peng, H.; Liu, L.; Li, C.; Kang, C.; Xie, S. An empirical atmospheric weighted mean temperature model considering the lapse rate function for China. Acta Geod. Cartogr. Sin. 2020, 49, 432–442. [Google Scholar]
- Yao, Y.; Sun, Z.; Xu, C.; Xu, X. Global Weighted Mean Temperature Model Considering Nonlinear Vertical Reduction. Geomat. Inf. Sci. Wuhan Univ. 2019, 44, 106–111. [Google Scholar]
- Mateus, P.; Catalão, J.; Mendes, V.B.; Nico, G. An ERA5-Based Hourly Global Pressure and Temperature (HGPT) Model. Remote Sens. 2020, 12, 1098. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Zhang, B.; Yao, Y. A Global Model for Estimating Tropospheric Delay and Weighted Mean Temperature Developed with Atmospheric Reanalysis Data from 1979 to 2017. Remote Sens. 2019, 11, 1893. [Google Scholar] [CrossRef] [Green Version]
Grid Point | Model | Bias | SD | RMS | Rate of Improvement (%) |
---|---|---|---|---|---|
(20° N, 110° E) | CTm-h | 0.668 | 2.43 | 2.52 | 0.05 |
GPT2w | 0.055 | 2.661 | 2.663 | ||
(35° N, 110° E) | CTm-h | 0.118 | 4.764 | 4.744 | 0.13 |
GPT2w | −2.436 | 5.153 | 5.468 | ||
(55° N, 110° E) | CTm-h | −0.226 | 5.198 | 5.195 | 0.22 |
GPT2w | −2.688 | 5.836 | 6.674 |
Model | Average Bias | Average SD | SD Maximum | Average RMS | RMS Maximum | Rate of Improvement (%) |
---|---|---|---|---|---|---|
CTm-h | 0.18 | 3.39 | 5.47 | 3.43 | 5.45 | 0.268 |
GPT2w | −2.48 | 3.58 | 5.86 | 4.69 | 6.68 |
Model | Average Bias | Average SD | SD Maximum | Average RMS | RMS Maximum |
---|---|---|---|---|---|
CTm-h | 3.63 | 3.65 | 6.22 | 4.64 | 7.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Chen, K.; Huang, G. A Weighted Mean Temperature Model with Nonlinear Elevation Correction Using China as an Example. Remote Sens. 2021, 13, 3887. https://doi.org/10.3390/rs13193887
Zhu H, Chen K, Huang G. A Weighted Mean Temperature Model with Nonlinear Elevation Correction Using China as an Example. Remote Sensing. 2021; 13(19):3887. https://doi.org/10.3390/rs13193887
Chicago/Turabian StyleZhu, Hai, Kejie Chen, and Guanwen Huang. 2021. "A Weighted Mean Temperature Model with Nonlinear Elevation Correction Using China as an Example" Remote Sensing 13, no. 19: 3887. https://doi.org/10.3390/rs13193887
APA StyleZhu, H., Chen, K., & Huang, G. (2021). A Weighted Mean Temperature Model with Nonlinear Elevation Correction Using China as an Example. Remote Sensing, 13(19), 3887. https://doi.org/10.3390/rs13193887