Co-Seismic and Postseismic Fault Models of the 2018 Mw 6.4 Hualien Earthquake Occurred in the Junction of Collision and Subduction Boundaries Offshore Eastern Taiwan
"> Figure 1
<p>(<b>a</b>) Tectonic setting of Taiwan characterized by opposing subduction systems in the north and south [<a href="#B9-remotesensing-10-01372" class="html-bibr">9</a>]. (<b>b</b>) Main fault systems (the black lines) of Taiwan orogeny. Seven GPS sites (red arrows) located at the Eurasia and Philippine Sea plates are got from the previous study [<a href="#B10-remotesensing-10-01372" class="html-bibr">10</a>], which show a NW directed block motion with an average velocity of ca. 8.2 cm/year [<a href="#B10-remotesensing-10-01372" class="html-bibr">10</a>]. The yellow star indicates the epicenter of the 2018 Hualien earthquake, and the beach balls are the focal mechanisms of the main shocks and major aftershocks of the 2018 Hualien events solved by USGS and BATS based on the New Automatic Full-Waveform Regional Moment Tensor Inversion Algorithm [<a href="#B11-remotesensing-10-01372" class="html-bibr">11</a>]. (<b>c</b>) SAR coverages (the red and blue lines) and aftershocks (red circles) are mapped on the digital Earth model with a high resolution of 30 m.</p> "> Figure 2
<p>Mapped surface deformation fields of the 2018 Hualien earthquake using the ALOS-2 and Sentinel-1 SAR images. (<b>a</b>) ALOS-2 ascending, (<b>c</b>) ALOS-2 descending, (<b>e</b>) Sentinel-1 ascending, and (<b>g</b>) Sentinel-1 descending InSAR deformation is wrapped by [–3.0 cm, 3.0 cm]. (<b>b</b>), (<b>d</b>), (<b>f</b>) and (<b>h</b>) are the absolute InSAR deformation fields of the 2018 Hualien earthquake. The yellow star indicates the epicenter of the 2018 Hualien earthquakes and major aftershocks, and the beach balls are the focal mechanisms of the main shocks and major aftershocks of the 2018 Hualien events solved by USGS and BATS.</p> "> Figure 3
<p>The co-seismic GPS displacements of the 2018 Hualien earthquakes. (<b>a</b>) The GPS horizontal surface displacements in the seismic zone of the 2018 Hualien event. The red vectors are the observed GPS displacements, the black vectors are the predicted GPS displacements based on the co-seismic faulting model shown in <a href="#remotesensing-10-01372-f004" class="html-fig">Figure 4</a>a, and the beach balls are the focal mechanisms of the main shocks and major aftershocks of the 2018 Hualien events solved by USGS and BATS. (<b>b</b>) The observed (red vectors) and predicted (black vectors) GPS vertical displacements.</p> "> Figure 4
<p>The faulting models respectively inferred by GPS and InSAR observations, and the red dots are the aftershocks of the 2018 Hualien earthquake. (<b>a</b>) The co-seismic faulting model inferred by GPS displacements with a peak slip of ca. 0.9 m. (<b>b</b>) The co-seismic and postseismic faulting model of the 2018 Hualien earthquake, in which the maximum accumulated slip magnitude is up to ca. 2.1 m.</p> "> Figure 5
<p>The planar fault slip distributions of the 2018 Mw 6.4 Hualien earthquake. The black lines denote the boundaries of the three segments of the Milun fault. (<b>a</b>) The estimated co-seismic fault slip distribution by the GPS data. (<b>b</b>) The estimated co-seismic and postseismic fault slip distribution by the four tracks InSAR observations.</p> "> Figure 6
<p>The predicted InSAR deformation using the faulting model shown in <a href="#remotesensing-10-01372-f004" class="html-fig">Figure 4</a>b, and the residual between the observed (<a href="#remotesensing-10-01372-f002" class="html-fig">Figure 2</a>) and predicted InSAR data. The predicted ALOS-2 ascending (<b>a</b>), ALOS-2 descending (<b>c</b>), Sentinel-1 ascending (<b>e</b>), and Sentinel-1 descending (<b>d</b>) InSAR deformation fields based on the preferred faulting model shown in <a href="#remotesensing-10-01372-f004" class="html-fig">Figure 4</a>b. The residuals between the observed and predicted InSAR data of the ALOS-2 ascending (<b>b</b>), ALOS-2 descending (<b>d</b>), Sentinel-1 ascending (<b>f</b>), and Sentinel-1 descending (<b>h</b>).</p> "> Figure 7
<p>The Coulomb failure stress change on the faults. (<b>a</b>) The CFS change on the two triggered faults including the Milun and west-dipping faults calculated by the co-seismic faulting model of the seismogenic fault (<a href="#remotesensing-10-01372-f004" class="html-fig">Figure 4</a>a). (<b>b</b>) The CFS change on all the faults calculated by the co-seismic faulting models shown in <a href="#remotesensing-10-01372-f004" class="html-fig">Figure 4</a>a.</p> "> Figure 8
<p>The Coulomb failure stress change at the depth of 10 km (the average depth of the aftershocks) with different receiver fault parameters. The red dots are the aftershocks of the 2018 Hualien earthquake, and the beach ball is the focal mechanism of the main shock of the 2018 Hualien event. The CFS change at the 10 km depth with receiver parameters of 201.7° for the strike angle, 89.4° for the dip angle, 45° (<b>a</b>) and 135° (<b>d</b>) for the rake angle. The CFS change at the 10 km depth with receiver parameters of 0.1° for the strike angle, 73.5° for the dip angle, and 45° (<b>b</b>) and 135° (<b>e</b>) for the rake angle. The CFS change at the 10 km depth with receiver parameters of 33.9° for the strike angle, 71.8° for the dip angle, and 45° (<b>c</b>) and 135° (<b>f</b>) for the rake angle. The blue dotted lines depict the significant positive CFS change areas.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Interpretation
2.2. Modeling Estimated by Geodetic Data
3. Result
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lallemand, S.E.; Liu, C.S.; Font, Y. A tear fault boundary between the Taiwan orogen and the Ryukyu subduction zone. Tectonophysics 1997, 274, 171–190. [Google Scholar] [CrossRef]
- Font, Y.; Liu, C.S.; Schnurle, P.; Lallemand, S. Constraints on backstop geometry of the southwest Ryukyu subduction based on reflection seismic data. Tectonophysics 2001, 333, 135–158. [Google Scholar] [CrossRef]
- Lee, C.P.; Kim, K.H.; Huang, B.S.; Huang, W.G. Seismicity, active faults, stress patterns, and rupture processes in the Hualien region, Taiwan, investigated using the 1990 Hualien earthquake sequence. Tectonophysics 2011, 511, 27–37. [Google Scholar] [CrossRef]
- Tsai, M.C.; Yu, S.B.; Shin, T.C.; Kuo, K.W.; Leu, P.L.; Chang, C.H.; Ho, M.Y. Velocity field derived from Taiwan continuous GPS array (2007–2013). Terr. Atmos. Ocean. Sci. 2015, 26, 527–556. [Google Scholar] [CrossRef]
- Johnson, K.M.; Hsu, Y.J.; Segall, P.; Yu, S.B. Fault geometry and slip distribution of the 1999 Chi-Chi, Taiwan earthquake imaged from inversion of GPS data. Geophys. Res. Lett. 2001, 28, 2285–2288. [Google Scholar] [CrossRef]
- Yu, S.B.; Kuo, L.C.; Hsu, Y.J.; Su, H.H.; Liu, C.C.; Hou, C.S.; Lee, J.F.; Lai, T.C.; Lui, C.C.; Liu, C.L.; et al. Preseismic deformation and co-seismic displacements associated with the 1999 Chi-Chi, Taiwan, earthquake. Bull. Seismol. Soc. Am. 2001, 91, 995–1012. [Google Scholar] [CrossRef]
- Chen, K.H.; Toda, S.; Rau, R.J. A leaping, triggered sequence along a segmented fault: The 1951 ML 7.3 Hualien-Taitung earthquake sequence in eastern Taiwan. J. Geophys. Res. Solid Earth 2008, 113, B02304. [Google Scholar] [CrossRef]
- Huang, M.H.; Tung, H.; Fielding, E.; Huang, H.H.; Liang, C.; Huang, C.; Hu, J.C. Multiple fault slip triggered above the 2016 Mw 6.4 MeiNong earthquake in Taiwan. Geophys. Res. Lett. 2016, 43, 7459–7467. [Google Scholar] [CrossRef]
- Angelier, J.; Lee, J.C.; Chu, H.T.; Hu, J.C.; Lu, C.Y.; Chan, Y.C.; Lin, T.J.; Font, Y.; Deffontaines, B.; Tsai, Y.B. Le Séisme de Chichi (1999) et sa place dans l’orègene de Taiwan. (The Chichi earthquake, 1999, and its role in the Taiwan orogeny). C. R. Acad. Sci. Paris Earth Planet. Sci. 2001, 333, 5–21. [Google Scholar] [CrossRef]
- Lin, K.C.; Hu, J.C.; Ching, K.E.; Angelier, J.; Rau, R.J.; Yu, S.B.; Tsai, C.H.; Shin, T.C.; Huang, M.H. GPS crustal deformation, strain rate and seismic activity after the 1999 Chi-Chi earthquake in Taiwan. J. Geophys. Res. 2010, 115, B07404. [Google Scholar] [CrossRef]
- Jian, P.R.; Tseng, T.L.; Liang, W.T.; Huang, P.H. A New Automatic Full-Waveform Regional Moment Tensor Inversion Algorithm and Its Applications in the Taiwan Area. Bull. Seismol. Soc. Am. 2018, 108, 573–587. [Google Scholar] [CrossRef]
- Bonilla, M.G. Summary of Quaternary faulting and elevation change in Taiwan. Mem. Geol. Soc. China 1977, 2, 43–55. [Google Scholar]
- Yamaguchi, M.; Ota, Y. Tectonic interpretations of Holocene marine terraces, east coast of Coastal Range, Taiwan. Quat. Int. 2004, 115, 71–81. [Google Scholar] [CrossRef]
- Hsu, T.L. Recent faulting in the Longitudinal Valley of eastern Taiwan. Mem. Geol. Soc. China 1962, 1, 95–102. [Google Scholar]
- Chung, L.H.; Chen, Y.G.; Wu, Y.M.; Shyu, J.B.H.; Kuo, Y.T.; Lin, Y.N.N. Seismogenic faults along the major suture of the plate boundary deduced by dislocation modeling of co-seismic displacements of the 1951 M7. 3 Hualien–Taitung earthquake sequence in eastern Taiwan. Earth Planet. Sci. Lett. 2008, 269, 416–426. [Google Scholar] [CrossRef]
- Lee, Y.H.; Chen, G.T.; Rau, R.J.; Ching, K.E. Co-seismic displacement and tectonic implication of 1951 Longitudinal Valley earthquake sequence, eastern Taiwan. J. Geophys. Res. Solid Earth 2008, 113, B04305. [Google Scholar] [CrossRef]
- Hamling, I.J.; Hreinsdóttir, S.; Clark, K.; Elliott, J.; Liang, C.; Fielding, E.; Litchfield, N.; Villamor, P.; Wallace, L.; Wright, T.J.; et al. Complex multifault rupture during the 2016 M w 7.8 Kaikōura earthquake, New Zealand. Science 2017, 356, eaam7194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wegmuller, U.; Werner, C. Gamma SAR processor and interferometry software. In Proceedings of the 3rd ERS Symposium, Florence, Italy, 14–21 March 1997; pp. 1687–1692. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Seal, D. The shuttle radar topography mission. Rev. Geophys. 2007, 45, 1–33. [Google Scholar] [CrossRef]
- Yang, Y.H.; Chen, Q.; Xu, Q.; Zhang, Y.; Yong, Q.; Liu, G. Co-seismic surface deformation of the 2014 Napa earthquake mapped by Sentinel-1A SAR and accuracy assessment with COSMO-SkyMed and GPS data as cross validation. Int. J. Digit. Earth 2017, 10, 1197–1213. [Google Scholar] [CrossRef]
- Rosen, P.A.; Gurrola, E.G.F.; Sacco, F.; Zebker, H. The InSAR scientific computing environment. In Proceedings of the 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 15 June 2012. [Google Scholar]
- Cheloni, D.; De Novellis, V.; Albano, M.; Antonioli, A.; Anzidei, M.; Atzori, S.; Avallone, A.; Bignami, C.; Bonano, M.; Calcaterra, S.; et al. Geodetic model of the 2016 Central Italy earthquake sequence inferred from InSAR and GPS data. Geophys. Res. Lett. 2017, 44, 6778–6787. [Google Scholar] [CrossRef] [Green Version]
- Welstead, S.T. Fractal and Wavelet Image Compression Techniques; SPIE Optical Engineering Press: Washington, DC, USA, 1999. [Google Scholar]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Van Laarhoven, P.J.; Aarts, E.H. Simulated annealing. In Simulated Annealing: Theory and Applications; Springer: Dordrecht, The Netherlands, 1987; pp. 7–15. [Google Scholar]
- Yang, Y.H.; Tsai, M.C.; Hu, J.C.; Aurelio, M.A.; Hashimoto, M.; Escudero, J.A.P.; Su, Z.; Chen, Q. Co-seismic slip deficit of the 2017 Mw 6.5 Ormoc Earthquake that occurred along a creeping segment and geothermal field of the Philippine Fault. Geophys. Res. Lett. 2018, 45, 2659–2668. [Google Scholar] [CrossRef]
- Lin, K.C.; Delouis, B.; Hu, J.C.; Nocquet, J.M.; Mozziconacci, L. Reassessing the complexity of the rupture of the 2010 Jia-Shian Earthquake (Mw 6.2) in Southwestern Taiwan by inverting jointly teleseismic, strong-motion and CGPS data. Tectonophysics 2016, 692, 278–294. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, Y.; Luo, R.; Liu, G.; Zhang, K. Deep co-seismic slip of the 2008 Wenchuan earthquake inferred from joint inversion of fault stress changes and GPS surface displacements. J. Geodyn. 2015, 87, 1–12. [Google Scholar] [CrossRef]
- Hanks, T.H. Earthquake stress-drops, ambient tectonic stresses, and the stresses that drive plates. Pure Appl. Geophys. 1977, 115, 441–458. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.F. New, improved version of Generic Mapping Tools released. EOS Trans. Am. Geophys. Union 1998, 79, 579. [Google Scholar] [CrossRef]
Sensor | Orbital Path | Acquisition Time (M-D-Y) | Heading Angle t(°) | Incidence Angle (°) | B┴ (m) |
---|---|---|---|---|---|
ALOS-2 | Ascending | Master: 11-05-2016 | 349.0 | 27.8 | −159.8 |
Slave: 02-10-2018 | |||||
ALOS-2 | Descending | Master: 06-18-2017 | 190.3 | 40.5 | 224.0 |
Slave: 02-11-2018 | |||||
Sentinel-1 | Ascending | Master: 02-03-2018 | 347.6 | 39.4 | −9.2 |
Slave: 02-09-2018 | |||||
Sentinel-1 | Descending | Master: 02-05-2018 | 192.4 | 33.9 | −42.9 |
Slave: 02-11-2018 |
Fault | Strike Angle (°) | Dip Angle (°) | Depth (km) | Rake Angle (°) |
---|---|---|---|---|
Seismogenic fault | 201.7 ± 3.7 | 89.4 ± 5.6 | −17.4 ± 2.4 | 58.1 ± 8.7 |
Milun fault-south segment | 0.1 ± 3.2 | 73.5 ± 4.2 | 0 | 44.9 ± 7.4 |
Milun fault-north segment | 33.9 ± 5.4 | 71.8 ± 3.4 | 0 | 44.9 ± 7.4 |
West-dipping fault | 206.3 ± 4.7 | 85.2 ± 2.7 | 0 | 11.8 ± 3.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.-H.; Hu, J.-C.; Tung, H.; Tsai, M.-C.; Chen, Q.; Xu, Q.; Zhang, Y.-J.; Zhao, J.-J.; Liu, G.-X.; Xiong, J.-N.; et al. Co-Seismic and Postseismic Fault Models of the 2018 Mw 6.4 Hualien Earthquake Occurred in the Junction of Collision and Subduction Boundaries Offshore Eastern Taiwan. Remote Sens. 2018, 10, 1372. https://doi.org/10.3390/rs10091372
Yang Y-H, Hu J-C, Tung H, Tsai M-C, Chen Q, Xu Q, Zhang Y-J, Zhao J-J, Liu G-X, Xiong J-N, et al. Co-Seismic and Postseismic Fault Models of the 2018 Mw 6.4 Hualien Earthquake Occurred in the Junction of Collision and Subduction Boundaries Offshore Eastern Taiwan. Remote Sensing. 2018; 10(9):1372. https://doi.org/10.3390/rs10091372
Chicago/Turabian StyleYang, Ying-Hui, Jyr-Ching Hu, Hsin Tung, Min-Chien Tsai, Qiang Chen, Qian Xu, Yi-Jun Zhang, Jing-Jing Zhao, Guo-Xiang Liu, Jun-Nan Xiong, and et al. 2018. "Co-Seismic and Postseismic Fault Models of the 2018 Mw 6.4 Hualien Earthquake Occurred in the Junction of Collision and Subduction Boundaries Offshore Eastern Taiwan" Remote Sensing 10, no. 9: 1372. https://doi.org/10.3390/rs10091372
APA StyleYang, Y. -H., Hu, J. -C., Tung, H., Tsai, M. -C., Chen, Q., Xu, Q., Zhang, Y. -J., Zhao, J. -J., Liu, G. -X., Xiong, J. -N., Wang, J. -Y., Yu, B., Chiu, C. -Y., & Su, Z. (2018). Co-Seismic and Postseismic Fault Models of the 2018 Mw 6.4 Hualien Earthquake Occurred in the Junction of Collision and Subduction Boundaries Offshore Eastern Taiwan. Remote Sensing, 10(9), 1372. https://doi.org/10.3390/rs10091372