Two-Layer Reversible Data Hiding for VQ-Compressed Images Based on De-Clustering and Indicator-Free Search-Order Coding
<p>An illustration of VQ image compression, where <math display="inline"><semantics> <mrow> <mi>w</mi> <mo>×</mo> <mi>h</mi> </mrow> </semantics></math> is the block size; <math display="inline"><semantics> <mrow> <mi>K</mi> <mo>=</mo> <mi>w</mi> <mo>×</mo> <mi>h</mi> </mrow> </semantics></math> is the codeword length of the codebook; <math display="inline"><semantics> <mi>i</mi> </semantics></math>, <math display="inline"><semantics> <mi>j</mi> </semantics></math>, and <math display="inline"><semantics> <mi>k</mi> </semantics></math> are the indices of the leading blocks.</p> "> Figure 2
<p>Illustration of the search order.</p> "> Figure 3
<p>An example of SOC.</p> "> Figure 4
<p>The flowchart of the proposed scheme.</p> "> Figure 5
<p>Illustration of the codebook sorting.</p> "> Figure 6
<p>An illustration of codewords clustering.</p> "> Figure 7
<p>Illustration of the side-match evaluation.</p> "> Figure 8
<p>Embedding example 1: matched case.</p> "> Figure 9
<p>Embedding example 2: mismatched case.</p> "> Figure 10
<p>Embedding example 3: abnormal block.</p> "> Figure 11
<p>Embedding example 1: compressible index.</p> "> Figure 12
<p>Embedding example 2: incompressible index.</p> "> Figure 13
<p>The second layer of data embedding.</p> "> Figure 14
<p>The extraction of the second layer secret data.</p> "> Figure 15
<p>Extraction example 1: matched case.</p> "> Figure 16
<p>Extraction example 2: mismatched case.</p> "> Figure 17
<p>Extraction example 3: abnormal block.</p> "> Figure 18
<p>Nine standard grayscale test images applied in our experiment. Tank (<b>a</b>), Bridge (<b>b</b>), Elaine (<b>c</b>), Lena (<b>d</b>), Peppers (<b>e</b>), Wine (<b>f</b>), Goldhill (<b>g</b>), Bird (<b>h</b>), Baboon (<b>i</b>).</p> "> Figure 19
<p>Comparisons with de-clustering RDH schemes. EC (<b>a</b>), file size (<b>b</b>), total bitrate (<b>c</b>), image bitrate (<b>d</b>).</p> "> Figure 20
<p>Comparisons with SOC-based RDH schemes. EC (<b>a</b>), file size (<b>b</b>), total bitrate (<b>c</b>), image bitrate (<b>d</b>).</p> ">
Abstract
:1. Introduction
2. Related Work
2.1. VQ Image Compression
2.2. Search-Order Coding (SOC)
3. Proposed Scheme
3.1. The Side-Match Evaluation
3.2. The First Layer of Data Embedding Process
Algorithm 1 The first-layer of data embedding for VQ index table. |
Input: cover image , specialized codebook , codeword mapping function , secret data . Output: 1-st stego index table . 1: Divide the cover image into mutually exclusive blocks sized . 2: Compress the cover image into index table according to codebook . 3: Encrypt the secret data by a stream cipher. 4: For each residual index , 5: Find the cluster label 6: If , 7: Retrieve a secret bit from . 8: If , record to ; else, record to . End 9: Else 10: Retrieve a secret bit from . 11: If , record to ; else record to . End 12: Retrieve a secret bit from . 13: If , record to ; else, record to . End 14: End 15: End |
3.3. The SOC Compression and the Second Layer of Data Embedding Processes
Algorithm 2 SOC and the second-layer of data embedding for stego VQ index table. |
Input: 1-st stego index table , secret data . Output: 2-nd (final) stego index table . 1: Stream cypher the secret data . 2: For each index , 3: If is SOC compressible, 4: Record by a label of 4 bits. 5: Retrieve 4 bits from and append to the label. 6: Record the 8 bits to . 7: Else ( is SOC incompressible or head or rear index of VQ) 8: Retrieve a secret bit from . 9: If , and record + to ; 10: Else (), and record + to . End 11: End 12: End |
3.4. Secret Data Extraction and Index Table Recovery Processes
Algorithm 3 Secret data extraction and index table recovery for de-clustering scheme. |
Input: stego index table , specialized codebook , codeword mapping Output: function . cover index table , secret data . 1: Phase 1: Execute SOC decoding and extract the 2-nd layer of secret data. 2: While is not empty, 3: Retrieve 4 bits from . 4: If , 5: Decode into by SOC and clip 4 bits of secret data from . 6: Else 7: Extract 1 bit of secret data (0 for ‘0000’ and 1 for ‘1111’). 8: Clip an index code from . 9: End 10: Record to and secret bits to . End 11: Phase 2: Recover VQ index table and extract the 1-st layer of secret data. 12: For each index , 13: IF , 14: Find its cluster label and counterpart . 15: Extract secret bit and record to . 16: If , record to ; else record to . End 17: Else 18: If , record ‘0’ to ; else , record ‘1’ to . End 19: Find its cluster label and counterpart . 20: Extract secret bit and record to . 21: If , record to ; else record to . End 22: End 23: End Stream cypher to decode. |
4. Experimental Results
4.1. Visual Quality of VQ Images
4.2. Effectiveness of Side-Match Evaluation
4.3. Performance of SOC Encoding
4.4. Comparison with Related Works
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, C.C.; Liu, Y.; Nguyen, T.S. A Novel Turtle Shell Based Scheme for Data Hiding. In Proceedings of the 2014 International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kita Kyushu, Japan, 27–29 August 2014; pp. 89–93. [Google Scholar] [CrossRef]
- Chang, C.C.; Li, C.T. Algebraic secret sharing using privacy homomorphisms for IoT-based healthcare systems. Math. Biosci. Eng. 2019, 16, 3367–3381. [Google Scholar] [CrossRef]
- Chi, H.; Chang, C.-C.; Liu, Y. An SMVQ compressed data hiding scheme based on multiple linear regression prediction. Connect. Sci. 2021, 33, 495–514. [Google Scholar] [CrossRef]
- Xiao, T.; Han, D.; He, J.; Li, K.-C.; de Mello, R.F. Multi-Keyword ranked search based on mapping set matching in cloud ciphertext storage system. Connect. Sci. 2021, 33, 95–112. [Google Scholar] [CrossRef]
- Chang, C.-C.; Li, C.-T.; Shi, Y.-Q. Privacy-Aware Reversible Watermarking in Cloud Computing Environments. IEEE Access 2018, 6, 70720–70733. [Google Scholar] [CrossRef]
- Chang, C.-C.; Li, C.-T.; Chen, K. Privacy-Preserving Reversible Information Hiding Based on Arithmetic of Quadratic Residues. IEEE Access 2019, 7, 54117–54132. [Google Scholar] [CrossRef]
- Xu, S.; Chang, C.-C.; Liu, Y. A high-capacity reversible data hiding scheme for encrypted images employing vector quantization prediction. Multimed. Tools Appl. 2021, 80, 20307–20325. [Google Scholar] [CrossRef]
- Carpentieri, B.; Castiglione, A.; De Santis, A.; Palmieri, F.; Pizzolante, R. One-pass lossless data hiding and compression of remote sensing data. Futur. Gener. Comput. Syst. 2019, 90, 222–239. [Google Scholar] [CrossRef]
- Mielikainen, J. LSB matching revisited. IEEE Signal. Process. Lett. 2006, 13, 285–287. [Google Scholar] [CrossRef]
- Chang, C.C.; Chou, Y.C.; Kieu, T.D. An Information Hiding Scheme Using Sudoku. In Proceedings of the Third International Conference on Innova-tive Computing, Information and Control, Dalian, China, 18–20 June 2008; pp. 17–22. [Google Scholar] [CrossRef]
- Chang, C.-C.; Horng, J.-H.; Shih, C.-S.; Wang, X. VQ-oriented data hiding based on adjustable error compensation strategy. Connect. Sci. 2021, 1–19. [Google Scholar] [CrossRef]
- Xie, X.-Z.; Chang, C.-C.; Horng, J.-H. An EMD-based data hiding scheme for JPEG images. Connect. Sci. 2021, 33, 515–531. [Google Scholar] [CrossRef]
- Gray, R. Vector quantization. IEEE Assp. Mag. 1984, 1, 4–29. [Google Scholar] [CrossRef]
- Wallace, G. The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 1992, 38, XVIII–XXXIV. [Google Scholar] [CrossRef]
- Xu, S.; Chang, C.-C.; Liu, Y. A novel image compression technology based on vector quantisation and linear regression prediction. Connect. Sci. 2021, 33, 219–236. [Google Scholar] [CrossRef]
- Chang, C.C.; Sung, C.H.; Chen, T.S. A locally adaptive scheme for image index compression. In Proceedings of the 1997 Conference on Computer Vision, Graphics, and Image Processing, Taichung, Taiwan, August 1997; pp. 93–99. [Google Scholar]
- Hsieh, C.-H.; Tsai, J.-C. Lossless compression of VQ index with search-order coding. IEEE Trans. Image Process. 1996, 5, 1579–1582. [Google Scholar] [CrossRef]
- Linde, Y.; Buzo, A.; Gray, R. An Algorithm for Vector Quantizer Design. IEEE Trans. Commun. 1980, 28, 84–95. [Google Scholar] [CrossRef] [Green Version]
- Kim, T. Side match and overlap match vector quantizers for images. IEEE Trans. Image Process. 1992, 1, 170–185. [Google Scholar] [CrossRef]
- Chang, C.-C.; Chen, G.-M.; Lin, M.-H. Information hiding based on search-order coding for VQ indices. Pattern Recognit. Lett. 2004, 25, 1253–1261. [Google Scholar] [CrossRef]
- Rahmani, P.; Dastghaibyfard, G.; Rahmani, E. A reversible data embedding scheme based on search order coding for VQ index tables. In Proceedings of the 8th International ISC Conference on Information Security and Cryptology, Mashhad, Iran, 14–15 September 2011; pp. 79–82. [Google Scholar]
- Hu, Y.C.; Shu, Y.Y.; Chen, Y.S.; Su, B.H. Reversible data hiding method based on the coding of VQ index table. In Proceedings of the E-learning and Information Technology Symposium, Tainan, Taiwan, 25 March 2015. [Google Scholar]
- Qin, C.; Hu, Y.-C. Reversible data hiding in VQ index table with lossless coding and adaptive switching mechanism. Signal. Process. 2016, 129, 48–55. [Google Scholar] [CrossRef]
- Lee, J.-D.; Chiou, Y.-H.; Guo, J.-M. Lossless data hiding for VQ indices based on neighboring correlation. Inf. Sci. 2013, 221, 419–438. [Google Scholar] [CrossRef]
- Lee, J.-D.; Chiou, Y.-H.; Guo, J.-M. Information Hiding Based on Block Match Coding for Vector Quantization-Compressed Images. IEEE Syst. J. 2014, 8, 737–748. [Google Scholar] [CrossRef]
- Lin, C.-C.; Liu, X.-L.; Yuan, S.-M. Reversible data hiding for VQ-compressed images based on search-order coding and state-codebook mapping. Inf. Sci. 2015, 293, 314–326. [Google Scholar] [CrossRef]
- Rahmani, P.; Dastghaibyfard, G. An efficient histogram-based index mapping mechanism for reversible data hiding in VQ-compressed images. Inf. Sci. 2018, 435, 224–239. [Google Scholar] [CrossRef]
- Lin, C.Y.; Chang, C.C. Hiding data in VQ-compressed images using dissimilar pairs. J. Comput. 2006, 17, 3–10. [Google Scholar]
- Chang, C.-C.; Hsieh, Y.-P.; Lin, C.-Y. Lossless Data Embedding with High Embedding Capacity Based on Declustering for VQ-Compressed Codes. IEEE Trans. Inf. Forensics Secur. 2007, 2, 341–349. [Google Scholar] [CrossRef]
- Chang, C.-C.; Lin, C.-Y.; Hsieh, Y.-P. Data hiding for vector quantization images using mixed-base notation and dissimilar patterns without loss of fidelity. Inf. Sci. 2012, 201, 70–79. [Google Scholar] [CrossRef]
- Chang, C.-C.; Chou, Y.-C.; Hsieh, Y.-P. Search-order coding method with indicator-elimination property. J. Syst. Softw. 2009, 82, 516–525. [Google Scholar] [CrossRef]
Images | PSNR (dB) | Images | PSNR (dB) | Images | PSNR (dB) |
---|---|---|---|---|---|
Tank | 31.75 | Lena | 30.66 | Goldhill | 29.89 |
Bridge | 31.86 | Peppers | 30.49 | Bird | 26.45 |
Elaine | 30.69 | Wine | 30.16 | Baboon | 25.59 |
Images | Abnormal Blocks | Images | Abnormal Blocks | Images | Abnormal Blocks |
---|---|---|---|---|---|
Tank | 7 | Lena | 147 | Goldhill | 91 |
Bridge | 1 | Peppers | 128 | Bird | 180 |
Elaine | 85 | Wine | 142 | Baboon | 373 |
Images | Compressible | Uncompressible | File Size | Bit Rate |
---|---|---|---|---|
Tank | 13,016 | 3368 | 18,113 | 0.55 |
Bridge | 14,472 | 1912 | 17,361 | 0.52 |
Elaine | 8638 | 7746 | 20,761 | 0.63 |
Lena | 9889 | 6495 | 20,279 | 0.61 |
Peppers | 9562 | 6822 | 22,013 | 0.67 |
Wine | 11,240 | 5144 | 19,709 | 0.60 |
Goldhill | 8294 | 8090 | 20,775 | 0.63 |
Bird | 6295 | 10,089 | 22,177 | 0.46 |
Baboon | 4179 | 12,205 | 23,809 | 0.67 |
Images | Layer 1 | Layer 2 | Total |
---|---|---|---|
Tank | 16,414 | 55,462 | 71,876 |
Bridge | 16,398 | 59,814 | 76,212 |
Elaine | 16,720 | 42,814 | 59,534 |
Lena | 16,816 | 46,483 | 63,299 |
Peppers | 16,863 | 51,549 | 68,412 |
Wine | 16,886 | 50,606 | 67,492 |
Goldhill | 16,615 | 41,497 | 58,112 |
Bird | 16,883 | 35,768 | 52,651 |
Baboon | 17,266 | 29,803 | 47,069 |
Image | [28] | [30] | Proposed Scheme | |
---|---|---|---|---|
Airplane | EC (bits) | — | 49,394 | 62,066 |
File size (bytes) | — | 19,982 | 21,838 | |
Baboon | EC (bits) | 16,129 | 36,436 | 47,069 |
File size (bytes) | 18,947 | 23,594 | 23,809 | |
Boat | EC (bits) | — | — | 64,361 |
File size (bytes) | — | — | 20,696 | |
Lena | EC (bits) | 16,129 | 42,630 | 63,299 |
File size (bytes) | 18,588 | 19,761 | 20,279 | |
Peppers | EC (bits) | 16,129 | 45,623 | 68,412 |
File size (bytes) | 15,548 | 19,644 | 22,013 |
Image | [28] | [30] | Proposed Method | |
---|---|---|---|---|
Airplane | Total BR | — | 0.609 | 0.666 |
Data BR | — | 0.188 | 0.236 | |
Image BR | — | 0.421 | 0.429 | |
Baboon | Total BR | 0.578 | 0.720 | 0.726 |
Data BR | 0.061 | 0.138 | 0.179 | |
Image BR | 0.516 | 0.581 | 0.547 | |
Boat | Total BR | — | — | 0.631 |
Data BR | — | — | 0.245 | |
Image BR | — | — | 0.386 | |
Lena | Total BR | 0.567 | 0.603 | 0.618 |
Data BR | 0.061 | 0.162 | 0.241 | |
Image BR | 0.505 | 0.440 | 0.377 | |
Peppers | Total BR | 0.474 | 0.599 | 0.671 |
Data BR | 0.061 | 0.174 | 0.260 | |
Image BR | 0.412 | 0.425 | 0.410 |
Image | [20] | [21] (m = 2) | [21] (m = 3) | [23] | Proposed Method | |
---|---|---|---|---|---|---|
Airplane | EC (bits) | 4096 | 10,208 | 11,348 | 12,933 | 62,066 |
File size | 16,252 | 14,647 | 14,942 | 13,664 | 21,838 | |
Baboon | EC (bits) | — | 3774 | 5482 | — | 47,069 |
File size | — | 16,744 | 16,711 | — | 23,809 | |
Boat | EC (bits) | 4096 | 10,007 | 10,993 | 12,671 | 64,361 |
File size | 16,449 | 14,680 | 14,974 | 13,762 | 20,696 | |
Lena | EC (bits) | 4096 | 10,183 | 11,390 | 12,770 | 63,299 |
File size | 17,727 | 14,614 | 14,811 | 13,631 | 20,279 | |
Peppers | EC (bits) | 4096 | 9586 | 10,787 | 12,803 | 68,412 |
File size | 17,006 | 14,843 | 15,106 | 13,729 | 22,013 |
Image | [20] | [21] (m = 2) | [21] (m = 3) | [23] | Proposed Method | |
---|---|---|---|---|---|---|
Airplane | Total BR | 0.495 | 0.446 | 0.455 | 0.416 | 0.666 |
Data BR | 0.015 | 0.038 | 0.043 | 0.049 | 0.236 | |
Image BR | 0.480 | 0.408 | 0.416 | 0.367 | 0.429 | |
Baboon | Total BR | — | 0.510 | 0.509 | — | 0.726 |
Data BR | — | 0.014 | 0.020 | — | 0.179 | |
Image BR | — | 0.496 | 0.489 | — | 0.547 | |
Boat | Total BR | 0.501 | 0.447 | 0.456 | 0.419 | 0.631 |
Data BR | 0.015 | 0.038 | 0.041 | 0.048 | 0.245 | |
Image BR | 0.486 | 0.409 | 0.415 | 0.371 | 0.386 | |
Lena | Total BR | 0.540 | 0.446 | 0.451 | 0.415 | 0.618 |
Data BR | 0.015 | 0.038 | 0.043 | 0.048 | 0.241 | |
Image BR | 0.525 | 0.407 | 0.408 | 0.367 | 0.377 | |
Peppers | Total BR | 0.518 | 0.452 | 0.460 | 0.418 | 0.671 |
Data BR | 0.015 | 0.036 | 0.041 | 0.048 | 0.260 | |
Image BR | 0.503 | 0.416 | 0.419 | 0.370 | 0.410 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-C.; Chang, J.-F.; Kao, W.-J.; Horng, J.-H. Two-Layer Reversible Data Hiding for VQ-Compressed Images Based on De-Clustering and Indicator-Free Search-Order Coding. Future Internet 2021, 13, 215. https://doi.org/10.3390/fi13080215
Chang C-C, Chang J-F, Kao W-J, Horng J-H. Two-Layer Reversible Data Hiding for VQ-Compressed Images Based on De-Clustering and Indicator-Free Search-Order Coding. Future Internet. 2021; 13(8):215. https://doi.org/10.3390/fi13080215
Chicago/Turabian StyleChang, Chin-Chen, Jui-Feng Chang, Wei-Jiun Kao, and Ji-Hwei Horng. 2021. "Two-Layer Reversible Data Hiding for VQ-Compressed Images Based on De-Clustering and Indicator-Free Search-Order Coding" Future Internet 13, no. 8: 215. https://doi.org/10.3390/fi13080215
APA StyleChang, C. -C., Chang, J. -F., Kao, W. -J., & Horng, J. -H. (2021). Two-Layer Reversible Data Hiding for VQ-Compressed Images Based on De-Clustering and Indicator-Free Search-Order Coding. Future Internet, 13(8), 215. https://doi.org/10.3390/fi13080215