General Linear Recurrence Sequences and Their Convolution Formulas
Abstract
:1. Introduction
2. Generating Functions
3. Recurrence Relation
3.1. Properties of the Basic Generating Function
3.1.1. Differential Equation
3.1.2. Differential Identity
3.2. Extension by Convolution
4. The General Case
5. The General Recurrence Relation
Extension to the General Case
6. Illustrative Examples—Second Order Recurrences
- Gegenbauer polynomials [14], defined by
- Sinha polynomials [15], defined by
- Fibonacci polynomials [16], defined byWe have:Since , we find
- Lucas polynomials [16], defined byWe have:Since , we find
Illustrative Examples—Higher Order Recurrences
7. Extension to Matrix Polynomials
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1984. [Google Scholar]
- Kuş, S.; Tuglu, N.; Kim, T. Bernoulli F-polynomials and Fibo-Bernoulli matrices. Adv. Differ. Equ. 2019, 2019, 145. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z. A New Identity Involving the Chebyshev Polynomials. Mathematics 2018, 6, 244. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, W. Some Identities Involving Fibonacci Polynomials and Fibonacci Numbers. Mathematics 2018, 6, 334. [Google Scholar] [CrossRef]
- Shen, S.; Chen, L. Some Types of Identities Involving the Legendre Polynomials. Mathematics 2019, 7, 114. [Google Scholar] [CrossRef]
- Zhang, W. Some identities involving the Fibonacci numbers and Lucas numbers. Fibonacci Q. 2004, 42, 149–154. [Google Scholar]
- Wang, S.Y. Some new identities of Chebyshev polynomials and their applications. Adv. Differ. Equ. 2015, 2015, 335. [Google Scholar]
- Kim, T.; Dolgy, D.V.; Kim, D.S.; Seo, J.J. Convolved Fibonacci numbers and their applications. Ars Combin. 2017, 135, 119–131. [Google Scholar]
- Chen, Z.; Qi, L. Some convolution formulae related to the second-order linear recurrence sequences. Symmetry 2019, 11, 788. [Google Scholar] [CrossRef]
- Sheffer, I.M. Some properties of polynomials sets of zero type. Duke Math. J. 1939, 5, 590–622. [Google Scholar] [CrossRef]
- Dattoli, G. Hermite-Bessel and Laguerre-Bessel functions: A by-product of the monomiality principle. In Advanced Special Functions and Applications, Proceedings of the Melfi School on Advanced Topics in Mathematics and Physics, Melfi, Italy, 9–12 May 1999; Cocolicchio, D., Dattoli, G., Srivastava, H.M., Eds.; Aracne Editrice: Rome, Italy, 2000; pp. 147–164. [Google Scholar]
- Dattoli, G.; Ricci, P.E.; Srivastava, H.M. (Eds.) Advanced Special Functions and Related Topics in Probability and in Differential Equations. In Proceedings of the Melfi School on Advanced Topics in Mathematics and Physics, Melfi, Italy, 24–29 June 2001. In Appl. Math. Comput. 2003, 141, 1–230. [Google Scholar]
- Ben Cheikh, Y. Some results on quasi-monomiality. Appl. Math. Comput. 2003, 141, 63–76. [Google Scholar] [CrossRef]
- Boas, R.P.; Buck, R.C. Polynomial Expansions of Analytic Functions; Springer: Berlin/Heidelberg, Germany; Gottingen, Germany; New York, NY, USA, 1958. [Google Scholar]
- Sinha, S.K. On a polynomial associated with Gegenbauer polynomial. Proc. Nat. Acad. Sci. India Sect. A 1989, 54, 439–455. [Google Scholar]
- Koshy, T. Fibonacci and Lucas Numbers with Applications; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Lidl, R. Tschebyscheffpolynome in mehreren variabelen. J. Reine Angew. Math. 1975, 273, 178–198. [Google Scholar]
- Ricci, P.E. I polinomi di Tchebycheff in più variabili. Rend. Mat. (Ser. 6) 1978, 11, 295–327. [Google Scholar]
- Dunn, K.B.; Lidl, R. Multi-dimensional generalizations of the Chebyshev polynomials. I, II. Proc. Jpn. Acad. 1980, 56, 154–165. [Google Scholar] [CrossRef]
- Bruschi, M.; Ricci, P.E. I polinomi di Lucas e di Tchebycheff in più variabili. Rend. Mat. (Ser. 6) 1980, 13, 507–530. [Google Scholar]
- Goh, W.; He, M.X.; Ricci, P.E. On the universal zero attractor of the Tribonacci-related polynomials. Calcolo 2009, 46, 95–129. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, W.A.; Hiba, H. Some expansions for a class of generalized Humbert Matrix polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A. Matem. 2019. To appear. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricci, P.E.; Natalini, P. General Linear Recurrence Sequences and Their Convolution Formulas. Axioms 2019, 8, 132. https://doi.org/10.3390/axioms8040132
Ricci PE, Natalini P. General Linear Recurrence Sequences and Their Convolution Formulas. Axioms. 2019; 8(4):132. https://doi.org/10.3390/axioms8040132
Chicago/Turabian StyleRicci, Paolo Emilio, and Pierpaolo Natalini. 2019. "General Linear Recurrence Sequences and Their Convolution Formulas" Axioms 8, no. 4: 132. https://doi.org/10.3390/axioms8040132
APA StyleRicci, P. E., & Natalini, P. (2019). General Linear Recurrence Sequences and Their Convolution Formulas. Axioms, 8(4), 132. https://doi.org/10.3390/axioms8040132