Solutions of the Generalized Abel’s Integral Equations of the Second Kind with Variable Coefficients
Abstract
:1. Introduction
2. The Main Results
3. Illustrative Examples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Li, M.; Zhao, W. Solving Abel’s type integral equation with Mikusinski’s operator of fractional order. Adv. Math. Phys. 2013, 2013, 806984. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Linear and Nonlinear Integral Equations: Methods and Applications; Higher Education: Beijing, China; Springer: Berlin, Germany, 2011. [Google Scholar]
- Wazwaz, A.M. A First Course in Integral Equations; World Scientific Publishing: Singapore, 1997. [Google Scholar]
- Wazwaz, A.M.; Mehanna, M.S. The combined Laplace-Adomian method for handling singular integral equation of heat transfer. Int. J. Nonlinear Sci. 2010, 10, 248–252. [Google Scholar]
- Mann, W.R.; Wolf, F. Heat transfer between solids and gases under nonlinear boundary conditions. Q. Appl. Math. 1951, 9, 163–184. [Google Scholar] [CrossRef] [Green Version]
- Goncerzewicz, J.; Marcinkowska, H.; Okrasinski, W.; Tabisz, K. On percolation of water from a cylindrical reservoir into the surrounding soil. Appl. Math. 1978, 16, 249–261. [Google Scholar] [CrossRef]
- Keller, J.J. Propagation of simple nonlinear waves in gas filled tubes with friction. Z. Angew. Math. Phys. 1981, 32, 170–181. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order. In Fractals and Fractional Calculus in Continuum Mechanics; Springer: New York, NY, USA, 1997; pp. 223–276. [Google Scholar]
- Avazzadeh, Z.; Shafiee, B.; Loghmani, G.B. Fractional calculus for solving Abel’s integral equations using Chebyshev polynomials. Appl. Math. Sci. 2011, 5, 2207–2216. [Google Scholar]
- Lubich, C. Fractional linear multistep methods for Abel-Volterra integral equations of the second kind. Math. Comput. 1985, 45, 463–469. [Google Scholar] [CrossRef]
- Huang, L.; Huang, Y.; Li, X.F. Approximate solution of Abel integral equation. Comput. Math. Appl. 2008, 56, 1748–1757. [Google Scholar] [CrossRef] [Green Version]
- Brunner, H. Collocation Methods for Volterra Integral and Related Functional Differential Equations; Cambridge Monographs on Applied and Computational Mathematics, 15; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Mandal, N.; Chakrabart, A.; Mandal, B.N. Solution of a system of generalized Abel integral equations using fractional calculus. Appl. Math. Lett. 1996, 9, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Saxena, R.K. Operators of fractional integration and their applications. Appl. Math. Comput. 2001, 118, 1–52. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Srivastava, H.M.; Buschman, R.G. Theory and Applications of Convolution Integral Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1992. [Google Scholar]
- Tamarkin, J.D. On integrable solutions of Abel’s integral equation. Ann. Math. 1930, 31, 219–229. [Google Scholar] [CrossRef]
- Sumner, D.B. Abel’s integral equation as a convolution transform. Proc. Am. Math. Soc. 1956, 7, 82–86. [Google Scholar]
- Minerbo, G.N.; Levy, M.E. Inversion of Abel’s integral equation by means of orthogonal polynomials. SIAM J. Numer. Anal. 1969, 6, 598–616. [Google Scholar] [CrossRef]
- Hatcher, J.R. A nonlinear boundary problem. Proc. Am. Math. Soc. 1985, 95, 441–448. [Google Scholar] [CrossRef]
- Gorenflo, R.; Luchko, Y. Operational method for solving generalized Abel integral equation of second kind. Integr. Transform. Spec. Funct. 1997, 5, 47–58. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: North-Holland, The Netherlands, 2006. [Google Scholar]
- Brunner, H. A survey of recent advances in the numerical treatment of Volterra integral and integro-differential equations. J. Comput. Appl. Math. 1982, 8, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Pskhu, A. On solution representation of generalized Abel integral equation. J. Math. 2013, 2013, 106251. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Li, C.P.; Clarkson, K. Several results of fractional differential and integral equations in distribution. Mathematics 2018, 6, 97. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Humphries, T.; Plowman, H. Solutions to Abel’s integral equations in distributions. Axioms 2018, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Clarkson, K. Babenko’s Approach Abel’s Integral Equations. Mathematics 2018, 6, 32. [Google Scholar]
- Babenko, Y.I. Heat and Mass Transfer; Khimiya: Leningrad, Russia, 1986. (In Russian) [Google Scholar]
- Hille, E.; Tamarkin, J.D. On the theory of linear integral equations. Ann. Math. 1930, 31, 479–528. [Google Scholar] [CrossRef]
- Barros-Neto, J. An Introduction to the Theory of Distributions; Marcel Dekker, Inc.: New York, NY, USA, 1973. [Google Scholar]
- Gel’fand, I.M.; Shilov, G.E. Generalized Functions; Academic Press: New York, NY, USA, 1964; Volume I. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Plowman, H. Solutions of the Generalized Abel’s Integral Equations of the Second Kind with Variable Coefficients. Axioms 2019, 8, 137. https://doi.org/10.3390/axioms8040137
Li C, Plowman H. Solutions of the Generalized Abel’s Integral Equations of the Second Kind with Variable Coefficients. Axioms. 2019; 8(4):137. https://doi.org/10.3390/axioms8040137
Chicago/Turabian StyleLi, Chenkuan, and Hunter Plowman. 2019. "Solutions of the Generalized Abel’s Integral Equations of the Second Kind with Variable Coefficients" Axioms 8, no. 4: 137. https://doi.org/10.3390/axioms8040137
APA StyleLi, C., & Plowman, H. (2019). Solutions of the Generalized Abel’s Integral Equations of the Second Kind with Variable Coefficients. Axioms, 8(4), 137. https://doi.org/10.3390/axioms8040137