Nothing Special   »   [go: up one dir, main page]

\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A short proof of the logarithmic Bramson correction in Fisher-KPP equations

Abstract / Introduction Related Papers Cited by
  • In this paper, we explain in simple PDE terms a famous result of Bramson about the logarithmic delay of the position of the solutions $u(t,x)$ of Fisher-KPP reaction-diffusion equations in $\mathbb{R}$, with respect to the position of the travelling front with minimal speed. Our proof is based on the comparison of $u$ to the solutions of linearized equations with Dirichlet boundary conditions at the position of the minimal front, with and without the logarithmic delay. Our analysis also yields the large-time convergence of the solutions $u$ along their level sets to the profile of the minimal travelling front.
    Mathematics Subject Classification: Primary: 35K57, 35C07; Secondary: 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics, Adv. Math., 30 (1978), 33-76.doi: 10.1016/0001-8708(78)90130-5.

    [2]

    H. Berestycki and F. Hamel, Generalized travelling waves for reaction-diffusion equations, in "Perspectives in Nonlinear Partial Differential Equations, in Honor of H. Brezis", Amer. Math. Soc., Contemp. Math., (2007), 101-123.doi: 10.1090/conm/446/08627.

    [3]

    M. D. Bramson, Maximal displacement of branching Brownian motion, Comm. Pure Appl. Math., 31 (1978), 531-581.doi: 10.1002/cpa.3160310502.

    [4]

    M. D. Bramson, "Convergence of Solutions of the Kolmogorov Equation to Travelling Waves," Mem. Amer. Math. Soc., 1983.

    [5]

    E. Brunet and B. Derrida, Shift in the velocity of a front due to a cutoff, Phys. Rev. E, 56 (1997), 2597-2604.doi: 10.1103/PhysRevE.56.2597.

    [6]

    C. Cuesta and J. King, Front propagation in a heterogeneous Fisher equation: The homogeneous case is non-generic, Quart. J. Mech. Appl. Math., 63 (2010), 521-571.doi: 10.1093/qjmam/hbq017.

    [7]

    J.-P. Eckmann and T. Gallay, Front solutions for the Ginzburg-Landau equation, Comm. Math. Phys., 152 (1993), 221-248.doi: 10.1007/BF02098298.

    [8]

    U. Ebert and W. van Saarloos, Front propagation into unstable states: Universal algebraic convergence towards uniformly translating pulled fronts, Phys. D, 146 (2000), 1-99.doi: 10.1016/S0167-2789(00)00068-3.

    [9]

    U. Ebert, W. van Saarloos and B. Peletier, Universal algebraic convergence in time of pulled fronts: The common mechanism for difference-differential and partial differential equations, European J. Appl. Math., 13 (2002), 53-66.doi: 10.1017/S0956792501004673.

    [10]

    P. C. Fife, "Mathematical Aspects of Reacting and Diffusing Systems," Lecture Notes in Biomathematics, Springer Verlag, 1979.

    [11]

    R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), 353-369.doi: 10.1111/j.1469-1809.1937.tb02153.x.

    [12]

    F. Hamel, J. Nolen, J.-M. Roquejoffre and L. RyzhikThe logarithmic delay of KPP fronts in a periodic medium, preprint.

    [13]

    K.-S. Lau, On the nonlinear diffusion equation of Kolmogorov, Petrovskii and Piskunov, J. Diff. Eqs., 59 (1985), 44-70.doi: 10.1016/0022-0396(85)90137-8.

    [14]

    A. N. Kolmogorov, I. G. Petrovsky and N. S. Piskunov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. État Moscou, Sér. Inter. A, 1 (1937), 1-26.

    [15]

    J. D. Murray, "Mathematical Biology," Springer-Verlag, 2003.doi: 10.1007/b98869.

    [16]

    F. Rothe, Convergence to travelling fronts in semilinear parabolic equations, Proc. Royal Soc. Edinburgh A, 80 (1978), 213-234.doi: 10.1017/S0308210500010258.

    [17]

    D. H. Sattinger, Weighted norms for the stability of traveling waves, J. Diff. Eqs., 25 (1977), 130-144.doi: 10.1016/0022-0396(77)90185-1.

    [18]

    K. Uchiyama, The behavior of solutions of some nonlinear diffusion equations for large time, J. Math. Kyoto Univ., 18 (1978), 453-508.

    [19]

    J. Xin, "An Introduction to Fronts in Random Media," Surveys and Tutorials in the Applied Mathematical Sciences, Springer, New York, 2009.doi: 10.1007/978-0-387-87683-2.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(296) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return