Nothing Special   »   [go: up one dir, main page]

\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Convergence of vanishing capillarity approximations for scalar conservation laws with discontinuous fluxes

Abstract / Introduction Related Papers Cited by
  • Flow of two phases in a heterogeneous porous medium is modeled by a scalar conservation law with a discontinuous coefficient. As solutions of conservation laws with discontinuous coefficients depend explicitly on the underlying small scale effects, we consider a model where the relevant small scale effect is dynamic capillary pressure. We prove that the limit of vanishing dynamic capillary pressure exists and is a weak solution of the corresponding scalar conservation law with discontinuous coefficient. A robust numerical scheme for approximating the resulting limit solutions is introduced. Numerical experiments show that the scheme is able to approximate interesting solution features such as propagating non-classical shock waves as well as discontinuous standing waves efficiently.
    Mathematics Subject Classification: Primary: 35L65; Secondary: 35L77.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    Adimurthi, S. Mishra and G. D. Veerappa Gowda, Optimal entropy solutions for conservation laws with discontinuous flux-functions, J. Hyp. Diff. Eqns., 2 (2005), 783-837.doi: 10.1142/S0219891605000622.

    [2]

    B. Andreianov, K. H. Karlsen and N. H. Risebro, A theory of $L^1$-dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal., 201 (2011), 27-86.doi: 10.1007/s00205-010-0389-4.

    [3]

    E. Audusse and B. Perthame, Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 253-265.doi: 10.1017/S0308210500003863.

    [4]

    K. Aziz and A. Settari, Fundamentals of Petroleum Reservoir Simulation, Applied Science Publishers, London, 1979.

    [5]

    R. Bürger, K. H. Karlsen, N. H. Risebro and J. D. Towers, Well posedness in $BV_t$ and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units, Numer. Math., 97 (2004), 25-65.doi: 10.1007/s00211-003-0503-8.

    [6]

    G. M. Coclite and K. H. Karlsen, A singular limit problem for conservation laws related to the Camassa-Holm shallow water equation, Comm. Partial Differential Equations, 31 (2006), 1253-1272.doi: 10.1080/03605300600781600.

    [7]

    G. M. Coclite, K. H. Karlsen, S. Mishra and N. H. Risebro, Convergence of vanishing viscosity approximations of $2\times2$ triangular systems of multi-dimensional conservation laws, Boll. Unione Mat. Ital. (9), 2 (2009), 275-284.

    [8]

    C. Dafermos, Hyperbolic Conservation laws in Continuum Physics, $3^{rd}$ edition, Springer-Verlag, New York, 2005.

    [9]

    E. vanDuijn, L. A. Peletier and S. Pop, A new class of entropy solutions of the Buckley-Leverett equation, SIAM J. Math. Anal., 39 (2007), 507-536.doi: 10.1137/05064518X.

    [10]

    T. Gimse and N. H. Risebro, Solution of the Cauchy problem for a conservation law with a discontinuous flux function, SIAM J. Math. Anal., 23 (1992), 635-648.doi: 10.1137/0523032.

    [11]

    R. Helmig, A. Weiss and B. I. Wohlmuth, Dynamic capillary effects in heterogeneous porous media, Comp. Geosci., 11 (2007), 261-274.doi: 10.1007/s10596-007-9050-1.

    [12]

    S. Hassanizadeh and W. G. Gray, Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries, Adv. Wat. Res., 13 (1990), 169-186.doi: 10.1016/0309-1708(90)90040-B.

    [13]

    H. Holden, K. H. Karlsen and D. Mitrovic, Zero diffusion-dispersion-smoothing limits for scalar conservation law with discontinuous flux function, International Journal of Differential Equations, 2009 (2009), Art. ID 279818, 1-33.

    [14]

    H. Holden, K. H. Karlsen, D. Mitrovic and E. Y. Panov, Strong compactness of approximate solutions to degenerate elliptic-hyperbolic equations with discontinuous flux function, Acta Mathematica Scientia, 29B (2009), 573-612.doi: 10.1016/S0252-9602(10)60004-5.

    [15]

    K. H. Karlsen and F. KisslingOn the singular limit of a two-phase flow equation with heterogeneities and dynamic capillary pressure, Z. Angew. Math. Mech., to appear.

    [16]

    K. H. Karlsen, N. H. Risebro and J. Towers, $L^1$ stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients, Skr. K. Nor. Vidensk. Selsk., 3 (2003), 1-49.

    [17]

    F. Kissling and C. Rohde, The computation of nonclassical shock waves with a heterogeneous multiscale method, Netw. Heterog. Media, 5 (2010), 661-674.doi: 10.3934/nhm.2010.5.661.

    [18]

    P. LeFloch, Hyperbolic Systems of Conservation Laws: The Theory Of Classical and Non-Classical Shock Waves, Lecture notes in Mathematics., ETH Zürich, Birkhauser, 2002.doi: 10.1007/978-3-0348-8150-0.

    [19]

    S. Mishra and J. Jaffré, On the upstream mobility scheme for two-phase flow in porous media, Comp. GeoSci., 14 (2010), 105-124.doi: 10.1007/s10596-009-9135-0.

    [20]

    F. Murat, L'injection du cône positif de $H^{-1}$ dans $W^{-1,q}$ est compacte pour tout $q<2$, J. Math. Pures Appl. (9), 60 (1981), 309-322.

    [21]

    S. Mochon, An analysis of the traffic on highways with changing surface conditions, Math. Model., 9 (1987), 1-11.doi: 10.1016/0270-0255(87)90068-6.

    [22]

    E. Yu. Panov, Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux, Arch. Ration. Mech. Anal., 195 (2010), 643-673.doi: 10.1007/s00205-009-0217-x.

    [23]

    E. Yu. Panov, Erratum to: Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux, Arch. Ration. Mech. Anal., 196 (2010), 1077-1078.doi: 10.1007/s00205-010-0303-0.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(178) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return