Citation: |
[1] |
A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno and C. Zhou, Synchronization in complex networks, Phys. Rep., 469 (2008), 93-153.doi: 10.1016/j.physrep.2008.09.002. |
[2] |
A. Arenas, J. Duch, A. Fernández and S. Gómez, Size reduction of complex networks preserving modularity, New J. Phys., 9 (2007), 1-176. |
[3] |
A. Arenas, A. Fernández and S. Gómez, Analysis of the structure of complex networks at different resolution levels, New J. Phys., 10 (2008), 053039.doi: 10.1088/1367-2630/10/5/053039. |
[4] |
E. T. Bell, Exponential numbers, Am. Math. Mon., 41 (1934), 411-419.doi: 10.2307/2300300. |
[5] |
U. Brandes, D. Delling, M. Gaertler, R. Goerke, M. Hoefer, Z. Nikoloski and D. Wagner, On modularity clustering, IEEE T. Knowl. Data En., 20 (2008), 172-188.doi: 10.1109/TKDE.2007.190689. |
[6] |
S. R. Campbell, D. L. L. Wang and C. Jayaprakash, Synchrony and desynchrony in integrate-and-fire oscillators, Neural Comput., 11 (1999), 1595-1619.doi: 10.1162/089976699300016160. |
[7] |
A. Clauset, M. E. J. Newman and C. Moore, Finding community structure in very large networks, Phys. Rev. E, 70 (2004), 066111.doi: 10.1103/PhysRevE.70.066111. |
[8] |
A. V. Deardorff, "Terms of Trade: Glossary of International Economics,'' World Scientific, Singapore, 2006. |
[9] |
J. Duch and A. Arenas, Community identification using extremal optimization, Phys. Rev. E, 72 (2005), 027104.doi: 10.1103/PhysRevE.72.027104. |
[10] |
G. Fagiolo, J. Reyes and S. Schiavo, World-trade web: Topological properties, dynamics, and evolution, Phys. Rev. E, 79 (2009), 036115.doi: 10.1103/PhysRevE.79.036115. |
[11] |
D. Garlaschelli, T. Di Matteo, T. Aste, G. Caldarelli and M. I. Loffredo, Interplay between topology and dynamics in the World Trade Web, Eur. Phys. J. B, 57 (2007), 159-164.doi: 10.1140/epjb/e2007-00131-6. |
[12] |
R. Guimerà and L. A. N. Amaral, Cartography of complex networks: modules and universal roles, J. Stat. Mech., (2005), P02001. |
[13] |
K. S. Gleditsch, Expanded Trade and GDP data, J. Conflict Resolut., 46 (2002), 712-724.doi: 10.1177/002200202236171. |
[14] |
J. He and M. W. Deem, Structure and response in the World Trade Network, Phys. Rev. Lett., 105 (2010), 198701.doi: 10.1103/PhysRevLett.105.198701. |
[15] |
M. A. Kose, C. Otrok and E. S. Prasad, Global business cycles: Convergence or decoupling?, Nat. Bureau of Economic Research, Working Paper, 14292 (2008). |
[16] |
H. P. Minsky, "Stabilizing an Unstable Economy,'' Yale University Press, New Haven and London, 1986. |
[17] |
H. P. Minsky, The financial instability hypothesis, The Jerome Levy Economics Institute, Working Paper, 74 (1992). |
[18] |
R. E. Mirollo and S. H. Strogatz, Synchronization of pulse-coupled biological oscillators, SIAM J. Appl. Math., 50 (1990), 1645-1662.doi: 10.1137/0150098. |
[19] |
M. E. J. Newman, Analysis of weighted networks, Phys. Rev. E, 70 (2004), 056131.doi: 10.1103/PhysRevE.70.056131. |
[20] |
M. E. J. Newman, Fast algorithm for detecting community structure in networks, Phys. Rev. E, 69 (2004), 066133.doi: 10.1103/PhysRevE.69.066133. |
[21] |
M. E. J. Newman, Modularity and community structure in networks, P. Natl. Acad. Sci. USA, 103 (2006), 8577-8582.doi: 10.1073/pnas.0601602103. |
[22] |
X. Li, Y. Y. Jin and G. Chen, Complexity and synchronization of the world trade web, Physica A, 328 (2003), 287-296.doi: 10.1016/S0378-4371(03)00567-3. |
[23] |
J. M. Pujol, J. Béjar and J. Delgado, Clustering algorithm for determining community structure in large networks, Phys. Rev. E, 74 (2006), 016107.doi: 10.1103/PhysRevE.74.016107. |
[24] |
A. Rothkegel and K. Lehnertz, Recurrent events of synchrony in complex networks of pulse-coupled oscillators, Europhys. Lett., 95 (2011), 38001.doi: 10.1209/0295-5075/95/38001. |
[25] |
M. A. Serrano and M. Boguñá, Topology of the world trade web, Phys. Rev. E, 68 (2003), 015101.doi: 10.1103/PhysRevE.68.015101. |
[26] |
T. Squartini, G. Fagiolo and D. Garlaschelli, Randomizing world trade. I. A binary network analysis, Phys. Rev. E, 84 (2011), 046117.doi: 10.1103/PhysRevE.84.046118. |
[27] |
M. Timme, F. Wolf and T. Geisel, Coexistence of regular and irregular dynamics in complex networks of pulse-coupled oscillators, Phys. Rev. Lett, 89 (2002), 258701.doi: 10.1103/PhysRevLett.89.258701. |