The motive of this research article is to introduce a sequence of Sz$ \acute{a}sz $ Schurer Beta bivariate operators in terms of generalization exponential functions and their approximation properties. Further, preliminaries results and definitions are presented. Moreover, we study existence of convergence with the aid of Korovkin theorem and order of approximation via usual modulus of continuity, Peetre's K-functional, Lipschitz maximal functional. Lastly, approximation properties of these sequences of operators are studied in B$ \ddot{o} $gel space via mixed modulus of continuity.
Citation: |
[1] | E. Acar and A. Izgi, The approximation of bivariate generalized Bernstein-Durrmeyer type GBS operators, Int. J. Map. Math., 5 (2022), 2-20. |
[2] | A. M. Acu and C. V. Muraru, Approximation properties of bivariate extension of $q$-Bernstein-Schurer-Kantorovich operators, Res. Math., 67 (2015), 265-279. doi: 10.1007/s00025-015-0441-7. |
[3] | P. N. Agrawal and N. Ispir, Degree of approximation for bivariate Chlodowsky-Szász-Charlier type operators, Results. Math., 69 (2016), 369-385. doi: 10.1007/s00025-015-0495-6. |
[4] | A. Alotaibi, M. Nasiruuzaman and M. Mursleen, A Dunkl type generalization of Sz$\acute{a}$sz operator via post-quantum calculus, J. Ineq. Appl., 2018 (2018), Paper No. 287, 15 pp. |
[5] | S. N. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités, Comm. Soc. Kha. Math., 13 (1912), 1-2. |
[6] | K. Bögel, Mehrdimensionale differentiation von Funktionen mehrerer ver$\ddot{a}$nderlichen, J. Rei. Angew. Math., 170 (1934), 197-217. doi: 10.1515/crll.1934.170.197. |
[7] | K. Bögel, $\ddot{U}$ber die Mehrdimensionale differentiation, Jber. Deutsch. Math.-Verein., 65 (1962/63), 45-71. |
[8] | N. L. Braha and U. Kadak, Approximation properties of the generalized Szász opertaors by multiple Appell polynomials via power summability method, Math. Meth. Appl. Sci., 43 (2020), 2337-2356. doi: 10.1002/mma.6044. |
[9] | J. Bruna and S. Mallat, Invariant scattering convolution networks, IEEE Trans. Pat. Anal. Mach. Intel., 35 (2013), 1872-1886. |
[10] | A. D. Gad$\hat{z}$iev, Positive operators in weighted space of functions of several variables, Izv. Akad. Nauk. Azer. SSR Ser. Fiz. khn. Math. Nahk, 1 (1980), 32-37. |
[11] | A. D. Gad$\hat{z}$iev and H. Hacisalihoglu, Convergence of the sequence of Linear positive operators, Ank. Univ. Yen., (1965). |
[12] | R. B. Gandhi, Deepmala and V. N. Mishra, Local and global results for modified Sz$\acute{a}$sz-Mirakjan operators, Math. Meth. Appl. Sci., 7 (2017), 2491-2504. doi: 10.1002/mma.4171. |
[13] | I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT, Pre., 2016. |
[14] | X. Guo, L. X. Li and Q. Wu, Modeling interactive components by coordinate kernel polynomial models, Math. Found. Comp., 3 (2020), 263-277. |
[15] | Z.-C. Guo, D.-H. Xiang, X. Guo and D.-X. Zhou, Thresholded spectral algorithms for sparse approximations, Anal. Appl. (Singap.), 15 (2017), 433-455. doi: 10.1142/S0219530517500026. |
[16] | G. E. Hinton, S. Osindero and Y.-W. Teh, A fast learning algorithm for deep belief nets, Neu. Compu., 18 (2006), 1527-1554. doi: 10.1162/neco.2006.18.7.1527. |
[17] | U. Kadak, V. N. Mishra and S. Pandey, Chlodowsky type generalization of $(p, q)$-Szasz operators involving Brenke type polynomials, Rev. de la Rel. Aca. de Cie. Ex. Fisi. y Natu. Ser. A. Math., 112 (2018), 1443-1462. doi: 10.1007/s13398-017-0439-y. |
[18] | A. Kajla, S. A. Mohiuddine and A. Alotaibi, Blending-type approximation by Lupas-Durrmeyer-type operators involving Polya distribution, Math. Meth. Appl. Sci., 44 (2021), 9407-9418. doi: 10.1002/mma.7368. |
[19] | Y. LeCun, The Unreasonable Effectiveness of Deep Learning, (In Seminar), Joh. Hopk. Univ., 2014. |
[20] | Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, Gradient-based learning applied to document recognition, Proce. of the IEEE., 86 (1998), 2278-2324. |
[21] | H. W. Lin, M. Tegmark and D. Rolnick, Why does deep and cheap learning work so well?, J. Stat. Phys., 168 (2017), 1223-1247. doi: 10.1007/s10955-017-1836-5. |
[22] | H. N. Mhaskar and T. Poggio, Deep vs. shallow networks an approximation theory perspective, Anal. Appl. (Singap.), 14 (2016), 829-848. doi: 10.1142/S0219530516400042. |
[23] | V. N. Mishra, K. Khatri, L. N. Mishra and Deepmala, Inverse result in simultaneous approximation by Baskkov-Durrmeyer-Stancu operators, J. Ineq. Appl., 2013 (2013), 586, 11 pp. |
[24] | L. N. MohiMishrauddine, A. Srivastava, T. Khan, S. A. Khan and V. N. Mishra, Inverse theorems for some linear positive operators using Beta and Baskakov basis functions, AIP, Conf. Proc., 2364 (2021). |
[25] | S. A. Mohiuddine, Approximation by bivariate generalized Bernstein-Schurer operators and associated GBS operators, Adv. Diff. Equ., 2020 (2020), Paper No. 676, 17 pp. |
[26] | S. A. Mohiuddine, T. Acar and A. Alotaibi, Construction of a new family of Bernstein-Kantorovich operators, Math. Meth. Appl. Sci., 40 (2017), 7749-7759. doi: 10.1002/mma.4559. |
[27] | M. Mursaleen, A. A. H. Al-Abied and K. J. Ansari, On approximation properties of Baskakov-Schurer-Szász-Stancu operators based on $q$-integers, Filomat, 32 (2018), 1359-1378. doi: 10.2298/FIL1804359M. |
[28] | M. Mursleen, T. Khan and M. Nasiruzzaman, Approximation properties of generalized Dunkl analogue of Sz$\acute{a}$sz operators, Appl. Math. Inf. Sci., 10 (2016), 2303-2310. doi: 10.18576/amis/100633. |
[29] | M. Mursaleen and M. Nasiruzzaman, Some approximation properties of bivariate Bleimann-Butzer-Hahn operators based on $(p, q)$-integers, Boll. Unione Mat. Ital., 10 (2017), 271-289. doi: 10.1007/s40574-016-0080-2. |
[30] | M. Nasiruzzaman, A. Mukheimer and M. Mursaleen, A Dunkl type Generalization of Sz$\acute{a}$sz-Kantrovich operators via post-quantum calculus, Symmetry, 11 (2019), 232. |
[31] | M. Nasiruzzaman, N. Rao, M. Kumar and R. Kumar, Approximation on bivariate parametric extension of Baskakov-Durrmeyer-opeator, Filomat, 35 (2021), 2783-2800. doi: 10.2298/FIL2108783N. |
[32] | M. Nasiruzzaman, H. M. Srivastava and S. A. Mohiuddine, Approximation process based on parametric generalization of Schurer Kantorovich operators and their bivariate form, Proc. Nat. Acad. Sci., India, Sect. Phys. Sci., (2022), 1-11. |
[33] | F. $\ddot{O}$zger, Weighted statistical approximation properties of univariate and bivariate $\lambda-$Kantorovich operators, Filomat, 33 (2019), 3473-3486. doi: 10.2298/FIL1911473O. |
[34] | F. $\ddot{O}$zger, H. M. Srivastava and S. A. Mohiuddine, Approximation of functions by a new class of generalized Bernstein-Schurer operators, Rev. Real. Acad. Cienc. Exa. Fis. Nat. Ser. A-Math., 114 (2020), Paper No. 173, 21 pp. |
[35] | M. Raiz, A. Kumar, V. N. Mishra and N. Rao, Dunkl Analouge of Sz$\acute{a}$sz-Schurer-Beata operator and there approximation behaviour, Math. Found. Comput., 5 (2022), 315-330. |
[36] | N. Rao, M. Heshamuddin and M. Shadab, Approximation properties of bivariate Sz$\acute{a}$sz Durrmeyer operators via Dunkl analogue, Filomat, 35 (2021), 4515-4532. doi: 10.2298/FIL2113515R. |
[37] | M. Rosenblum, Generalized Hermite polynomials and the Bose-like oscillator calculus, Oper. Theo. Adv. Appl., 73 (1994), 369-396. |
[38] | F. Schurer, Linear Positive Operators in Approximation Theory, Math. Inst. Tech. Univ. Delft. Repo., 1965. |
[39] | P. Sharma and V. N. Mishra, Bivariate generalization of $q$-Bernstein-Kantorovich type operator, Cogent Math., 3 (2016), Art. ID 1160587, 9 pp. |
[40] | S. Sucu, Dunkl analogue of Szasz operators, Appl. Math. Comput., 244 (2014), 42-48. doi: 10.1016/j.amc.2014.06.088. |
[41] | O. Sz$\acute{a}$sz, Generalization of S. Bernstein's polynomials to the infnite interval, J. Res. Nat. Bur. Standards, 45 (1950), 239-245. doi: 10.6028/jres.045.024. |
[42] | A. Wafi and N. Rao, A generalization of Sz$\acute{a}$sz-type operators which preserves constant and quadratic test functions, Cogent. Math., 3 (2016), Art. ID 1227023, 8 pp. |
[43] | D. X. Zhou, Deep distributed convolutional neural networks: Universality, Anal. Appl. (Singap.), 16 (2018), 895-919. doi: 10.1142/S0219530518500124. |