[1]
|
M. R. Ackermann, M. Märtens, C. Raupach, K. Swierkot, C. Lammersen and C. Sohler, Streamkm++: A clustering algorithm for data streams, Journal of Experimental Algorithmics, 17 (2012), Article 2.4, 30 pp.
doi: 10.1145/2133803.2184450.
|
[2]
|
C. Aggarwal, J. Han, J. Wang And P. Yu, A framework for projected clustering of high dimensional data streams, in Proceedings 2004 VLDB Conference, Elsevier, 2004, 852–863.
doi: 10.1016/B978-012088469-8.50075-9.
|
[3]
|
C. C. Aggarwal, P. S. Yu, J. Han and J. Wang, A framework for clustering evolving data streams, in Proceedings 2003 VLDB Conference, Elsevier, 2003, 81–92.
doi: 10.1016/B978-012722442-8/50016-1.
|
[4]
|
J. P. Barddal, H. M. Gomes and F. Enembreck, SNCStream: A social network-based data stream clustering algorithm, in Proceedings of the 30th Annual ACM Symposium on Applied Computing - SAC'15, SAC'15, ACM Press, New York, New York, USA, 2015, 935–940.
doi: 10.1145/2695664.2695674.
|
[5]
|
V. Bhatnagar, S. Kaur and S. Chakravarthy, Clustering data streams using grid-based synopsis, Knowledge and Information Systems, 41 (2014), 127-152.
doi: 10.1007/s10115-013-0659-1.
|
[6]
|
J. A. Blackard and D. J. Dean, Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables, Computers and Electronics in Agriculture, 24 (1999), 131–151.
doi: 10.1016/S0168-1699(99)00046-0.
|
[7]
|
F. Cao, M. Estert, W. Qian and A. Zhou, Density-based clustering over an evolving data stream with noise, in Proceedings of the 2006 SIAM International Conference on Data Mining, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2006, 328–339.
doi: 10.1137/1.9781611972764.29.
|
[8]
|
Y. Chen and L. Tu, Density-based clustering for real-time stream data, in Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD'07, ACM, ACM Press, New York, New York, USA, 2007, 133–142.
doi: 10.1145/1281192.1281210.
|
[9]
|
A. Forestiero, C. Pizzuti and G. Spezzano, A single pass algorithm for clustering evolving data streams based on swarm intelligence, Data Mining and Knowledge Discovery, 26 (2013), 1-26.
doi: 10.1007/s10618-011-0242-x.
|
[10]
|
J. Forrest, Stream: A framework for data stream modeling in r, Bachelor Thesis, Department of Computer Science and Engineering, SMU.
|
[11]
|
M. Hahsler and M. Bolaos, Clustering data streams based on shared density between micro-clusters, IEEE Transactions on Knowledge and Data Engineering, 28 (2016), 1449–1461, http://ieeexplore.ieee.org/document/7393836/.
doi: 10.1109/TKDE.2016.2522412.
|
[12]
|
S. Hettich and S. D. Bay, The UCI KDD Archive, http://kdd.ics.uci.edu, 1999.
|
[13]
|
A. K. Jain, M. N. Murty and P. J. Flynn, Data clustering: A review, ACM computing surveys (CSUR), 31 (1999), 264-323.
doi: 10.1145/331499.331504.
|
[14]
|
S. Kaur, V. Bhatnagar and S. Chakravarthy, Stream clustering algorithms: A primer, in Big Data in Complex Systems, Springer, 9 (2015), 105–145, http://link.springer.com/10.1007/978-3-319-11056-1.
doi: 10.1007/978-3-319-11056-1_4.
|
[15]
|
H. Kremer, P. Kranen, T. Jansen, T. Seidl, A. Bifet, G. Holmes and B. Pfahringer, An effective evaluation measure for clustering on evolving data streams, in Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2011, 868–876.
doi: 10.1145/2020408.2020555.
|
[16]
|
S. Lühr and M. Lazarescu, Incremental clustering of dynamic data streams using connectivity based representative points, Data & Knowledge Engineering, 68 (2009), 1–27, http://linkinghub.elsevier.com/retrieve/pii/S0169023X08001092.
|
[17]
|
J. Schneider and M. Vlachos, Fast parameterless density-based clustering via random projections, in Proceedings of the 22nd ACM International Conference on Conference on Information & Knowledge Management - CIKM'13, ACM, ACM Press, New York, New York, USA, 2013, 861–866.
doi: 10.1145/2505515.2505590.
|
[18]
|
N. Wattanakitrungroj, S. Maneeroj and C. Lursinsap, Bestream: Batch capturing with elliptic function for one-pass data stream clustering, Data & Knowledge Engineering, 117 (2018), 53–70, http://www.sciencedirect.com/science/article/pii/S0169023X17301027.
doi: 10.1016/j.datak.2018.07.002.
|
[19]
|
G. Widmer and M. Kubat, Learning in the presence of concept drift and hidden contexts, Machine Learning, 23 (1996), 69-101.
doi: 10.1007/BF00116900.
|
[20]
|
X. Zhang, C. Furtlehner and M. Sebag, Data streaming with affinity propagation, in Proc. Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Springer, 2008, 628–643.
doi: 10.1007/978-3-540-87481-2_41.
|
[21]
|
A. Zhou, F. Cao, W. Qian and C. Jin, Tracking clusters in evolving data streams over sliding windows, Knowledge and Information Systems, 15 (2008), 181-214.
doi: 10.1007/s10115-007-0070-x.
|