Nothing Special   »   [go: up one dir, main page]

\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stability analysis of a Filippov Gause predator-prey model with or without hunting cooperation among predators with respect to prey density

The first author is supported by MCIN/AEI/10.13039/501100011033 through grant BADS, no. PID2019-109320GB-100, and the associated FPI contract PRE2019-088899 to Christian Cortés García. The Spanish MICINN has also funded the "Severo Ochoa" Centers of Excellence to CNB, SEV 2017-0712

Abstract / Introduction Full Text(HTML) Figure(16) Related Papers Cited by
  • This paper investigates two new Filippov-Gause predator-prey models that show the transition between individual and cooperative hunting dynamics among predators with respect to the critical prey population size. By using Filippov systems, this research offers a more realistic and complete representation of the nonlinear dynamics and discontinuities inherent in this complex ecological system so that the proposed models provide a more complete view of predator-prey interactions in different realistic environmental contexts. For the case where predators only cooperate in hunting when the prey population size is larger than its critical value, we could have at least one asymptotically stable limit cycle around a single positive inner equilibrium, or two limit cycles around the pseudo-stable equilibrium. However, in the case where predators only cooperate in hunting when the prey population size is less than its critical value, we could have one limit cycle around two inner equilibria and one pseudo-equilibrium that is unstable. In general, as the two proposed models differ in the presence of a sliding or escaping segment, the overall dynamics and bifurcation diagrams of both models change significantly.

    Mathematics Subject Classification: Primary: 34A36, 34C23, 92D25; Secondary: 34D20, 34D23.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  General dynamics of the nullclines (6) of model (2) for the case where $ c-b\gamma>0 $. The purple and dark red nullclines are given by the functions (7) and (8), respectively. In particular, note that, if $ \hat{x}<K $ or $ K<\hat{x} $, then $ E_{0}^{+} $ is saddle point or stable node, respectively, with $ \hat{x} $ as shown in (8)

    Figure 2.  Bifurcation diagram in the plane $ (c, \gamma) $, together with phase portraits describing each bifurcation region, of model (2), with fixed parameters $ a = 0.8 $, $ b = 0.4 $, $ K = 5 $ and $ r = 2.5 $. The magenta curve shows the existence of an asymptotically stable limit cycle $ \Gamma_{G_{0}}^{s} $ in $ \Omega $. The red and blue points represent the boundary equilibria $ E_{0}^{0} $ and $ E_{0}^{+} $, respectively. The black point represents the positive inner equilibrium $ E_{0}^{1} $, which is unstable in region Ⅲ and globally asymptotically stable in region Ⅱ. In region Ⅰ, model (2) has no positive inner equilibria, so $ E_{0}^{+} $ is a globally asymptotically stable node, unlike in regions Ⅱ and Ⅲ where $ E_{0}^{+} $ is a saddle point. The dashed and normal lines in panel (a) represent a transcritical and a Hopf bifurcation, respectively

    Figure 3.  General dynamics of the nullclines (9) of model (3) for $ c-b\gamma>0 $. Note that the function (12), represented by the orange curve, is decreasing, which intersects with the nullcline $ \dot{x} = 0 $, given by the dark blue curve, at one or two points if $ E_{\nu}^{+} $ is a saddle point or a stable node, represented in panels (a, b), respectively. In particular, note that if $ \hat{x}<K $ or $ K<\hat{x} $, then $ E_{\nu}^{+} $ is a saddle point or stable node, respectively, with $ \hat{x} $ as shown in (8)

    Figure 4.  Bifurcation diagram in the plane $ (\nu, \gamma) $, together with phase portraits describing each bifurcation region, of model (3), with fixed parameters $ a = 0.8 $, $ b = 0.4 $, $ c = 0.05 $, $ K = 5 $, and $ r = 2.5 $. The magenta curve shows the existence of an asymptotically stable limit cycle $ \Gamma_{G_{\nu}}^{s} $ in $ \Omega $. The dark red and turquoise points represent the boundary equilibria $ E_{\nu}^{0} $ and $ E_{\nu}^{+} $, respectively. The grey, magenta, and orange points represent the positive inner equilibria $ E_{\nu}^{i} $, $ i = 1, 2, 3 $, respectively. In region Ⅰ, we have that model (3) has no positive inner equilibria, so $ E_{\nu}^{+} $ is a globally asymptotically stable node. In regions Ⅱ and Ⅲ, we have that $ E_{\nu}^{+} $ is saddle point, and $ E_{\nu}^{1} $ is the positive inner equilibrium in $ \Omega $, which is unstable in region Ⅲ and globally asymptotically stable in region Ⅱ. For regions Ⅳ and Ⅴ, we have that $ E_{\nu}^{+} $ is a locally asymptotically stable node, and $ E_{\nu}^{k} $, $ k = 2, 3 $, are positive inner equilibria in $ \Omega $, where $ E_{\nu}^{3} $ is saddle point, and $ E_{\nu}^{2} $ is unstable or locally asymptotically stable in regions Ⅴ or Ⅳ, respectively. The dashed, normal and dotted lines shown in panel (a) represent transcritical, Hopf, and saddle-node bifurcations, respectively

    Figure 5.  General dynamics of the nullclines (6) and (9) of model (15) for the case where $ c-b\gamma>0 $, where the color of the curves in each panel are described in Figures 1 and 3. The blue line represents $ \Sigma_{s}^{\epsilon} $. On the other hand, in panel (a) we have that $ E_{\nu}^{1} \notin \Sigma_{\nu}^\epsilon $ and $ E_{0}^{1} \in \Sigma_{0}^\epsilon $. In panel (b), we have that $ E_{\nu}^{i} \in \Sigma_{\nu}^\epsilon $, $ i = 2, 3 $

    Figure 6.  Example of regular quadratic tangency point $ T_{0} $ in model (3). The blue normal and black dotted curves represent $ \Sigma_{s}^{\epsilon} $ and $ \Sigma_{2c}^{\epsilon} $, respectively

    Figure 7.  Examples of a limit cycle $ \Gamma_{G_{\epsilon}} $ and cycle $ \Upsilon_{G_{\epsilon}} $ in model (15) represented by the purple curve. The black curves are trajectories $ \varphi_{G_{\epsilon}} $ that are not periodic

    Figure 8.  Bifurcation diagram of model (3) in the plane $ (P, \gamma) $ with fixed parameters $ a = 0.8 $, $ b = 0.4 $, $ c = 0.05 $ and $ r = 2.5 $. Note that the phase portraits showing each bifurcation region are shown in Figures 9, 10, and 11. The dotted, dashed, and normal line shows the existence of a transcritical, saddle-node, and Hopf bifurcation of model (3) at $ \Omega $. On the other hand, the dash-dotted line represents the $ \Sigma $-equilibrium bifurcation. The dark red and black dash dotted lines show the existence of crossing bifurcation and touching bifurcation, respectively, unlike the green dash-dotted line which shows the intersection of limit cycle $ \Gamma_{G_{\epsilon}} $ with $ \Sigma $. The blue dash-dotted line shows the intersection of $ W_{u}^{+}(E_{\nu}^{+}) $ with the regular tangent point $ T_{0} $

    Figure 9.  Phase portraits in bifurcation regions Ⅰ to Ⅵ of model (15) shown in Figure 8. The light red and light green trajectories are described by the vector fields $ G_{i} $, $ i = 0, \nu $, respectively. The blue line represents the sliding segment $ \Sigma_{s}^{\epsilon} $. The asymptotically stable limit cycle $ \Gamma_{G_{\epsilon}}^{s} $ or cycle $ \Upsilon_{G_{\epsilon}}^{s} $ are described by the closed magenta curve. The boundary equilibria $ E_{0}^{0} \in \Sigma_{0}^{\epsilon} $ and $ E_{\nu}^{+} \in \Sigma_{\nu}^{\epsilon} $ are described by the red and turquoise points, respectively, where $ E_{0}^{+} $ is a stable node in regions Ⅰ to Ⅳ, or a saddle point in regions Ⅴ to Ⅵ. Furthermore, the gray, magenta, and orange points describe the positive inner equilibria $ E_{\nu}^{i} \in \Sigma_{\nu}^{\epsilon} $, $ i = 1, 2, 3 $, respectively. In region Ⅰ, we have that model (15) has no positive inner equilibria or pseudo-equilibria. In regions Ⅱ to Ⅳ, we have that $ E_{\nu}^{i} \in \Sigma_{\nu}^{\epsilon} $, $ i = 2, 3 $, where $ E_{\nu}^{2} $ is stable in region Ⅱ, and unstable in regions Ⅲ and Ⅳ. In regions Ⅴ to Ⅵ we have that $ E_{\nu}^{1} \in \Sigma_{\nu}^{\epsilon} $, stable in region Ⅴ, and unstable in region Ⅵ

    Figure 10.  Phase portraits in bifurcation regions Ⅶ to Ⅻ of model (15) shown in Figure 8. The light red and light green trajectories are described by the vector fields $ G_{i} $, $ i = 0, \nu $, respectively. The blue line represents the sliding segment $ \Sigma_{s}^{\epsilon} $. The asymptotically stable limit cycle $ \Gamma_{G_{\epsilon}}^{s} $ or cycle $ \Upsilon_{G_{\epsilon}}^{s} $ are described by the closed magenta curve. The boundary equilibria $ E_{0}^{0} \in \Sigma_{0}^{\epsilon} $ and $ E_{\nu}^{+} \in \Sigma_{\nu}^{\epsilon} $ are described by the red and turquoise points, respectively, where $ E_{0}^{+} $ is a saddle point. In addition, the black, gray, orange, and green points describe the positive inner equilibria $ E_{0}^{1} \in \Sigma_{i}^{\epsilon} $, $ i = 0, \nu $, $ E_{\nu}^{3} \in \Sigma_{\nu}^{\epsilon} $, and the pseudo-equilibrium $ PN \in \Sigma_{s}^{\epsilon} $, respectively. In regions Ⅶ and Ⅷ, we have that $ E_{\nu}^{1} \in \Sigma_{\nu}^{\epsilon} $ is unstable. In regions Ⅸ and Ⅺ, we have that $ PN \in \Sigma_{s}^{\epsilon} $, where $ E_{\nu}^{3} \in \Sigma_{\nu}^{\epsilon} $ in region Ⅸ. In region Ⅻ, we have that $ E_{0}^{1} \in \Sigma_{0}^{\epsilon} $, which is stable

    Figure 11.  Phase portraits in bifurcation regions ⅫⅠ to XV of model (15) shown in Figure 8. The light red and light green trajectories are described by the vector fields $ G_{i} $, $ i = 0, \nu $, respectively. The blue line represents the sliding segment $ \Sigma_{s}^{\epsilon} $. The asymptotically stable limit cycle $ \Gamma_{G_{\epsilon}}^{s} $ or cycle $ \Upsilon_{G_{\epsilon}}^{s} $ are described by the closed magenta curve. The boundary equilibria $ E_{0}^{0} \in \Sigma_{0}^{\epsilon} $ and $ E_{\nu}^{+} \in \Sigma_{\nu}^{\epsilon} $ are described by the red and turquoise points, respectively, where $ E_{0}^{+} $ is a saddle point. In addition, the black point describes the positive inner equilibrium $ E_{0}^{1} \in \Sigma_{0}^{\epsilon} $, which is unstable

    Figure 12.  General dynamics of the nullclines (6) and (9) of model (19) for $ c-b\gamma>0 $, where the color of the curves in each panel are described in Figures 1 and 3. The red line represents $ \Sigma_{e}^{\tau} $. On the other hand, in panel (a) we have that $ E_{\nu}^{1} \in \Sigma_{\nu}^\tau $ and $ E_{0}^{1} \notin \Sigma_{0}^\tau $. In panel (b), we have that $ E_{\nu}^{i} \notin \Sigma_{\nu}^\tau $, $ i = 2, 3 $

    Figure 13.  Bifurcation diagram of model (19) in the plane $ (P, \gamma) $ with fixed parameters $ a = 0.8 $, $ b = 0.4 $, $ c = 0.05 $, $ r = 2.5 $. Note that the phase portraits showing each bifurcation region are shown in Figures 14, 15, and 16. The dotted, dashed, and normal line shows the existence of a transcritical, saddle-node, and Hopf bifurcation of model (19) at $ \Omega $. On the other hand, the dash-dotted line represents the boundary bifurcation. The green dash-dotted line shows the intersection of the limit cycle $ \Gamma_{G_{\epsilon}} $ with $ \Sigma $

    Figure 14.  Phase portraits in bifurcation regions Ⅰ to Ⅵ of model (19) shown in Figure 13. The light red and light green trajectories are described by the vector fields $ G_{i} $, $ i = 0, \nu $, respectively. The red line represents the escape region $ \Sigma_{e}^{\tau} $. The asymptotically stable limit cycle $ \Gamma_{G_{\tau}}^{s} $ is described by the closed magenta curve. The boundary equilibria $ E_{\nu}^{0} \in \Sigma_{\nu}^{\tau} $ and $ E_{0}^{+} \in \Sigma_{0}^{\tau} $ are described by the dark red and dark blue points, respectively, where $ E_{0}^{+} $ is a stable node. Furthermore, the green, magenta, and orange points describe the pseudo-equilibrium $ PN \in \Sigma_{e}^{\tau} $ and the positive inner equilibria $ E_{\nu}^{i} \in \Sigma_{\nu}^{\tau} $, $ i = 2, 3 $, respectively. In region Ⅰ, we have that model (15) has no positive inner equilibria and no pseudo-equilibria. In regions Ⅱ and Ⅲ, we have that $ E_{\nu}^{i} \in \Sigma_{\nu}^{\tau} $, $ i = 2, 3 $, where $ E_{\nu}^{2} \in \Sigma_{\nu}^{\tau} $ is globally asymptotically stable in region Ⅱ and unstable in region Ⅲ. In regions Ⅳ to Ⅵ, we have that $ E_{\nu}^{2} \in \Sigma_{\nu}^{\tau} $ and $ PN \in \Sigma_{e}^{\tau} $, where $ E_{\nu}^{2} \in \Sigma_{\nu}^{\tau} $ is globally asymptotically stable in region Ⅳ, and unstable in regions Ⅴ to Ⅵ

    Figure 15.  Phase portraits in bifurcation regions Ⅶ to Ⅻ of model (19) shown in Figure 13. The light red and light green trajectories are described by the vector fields $ G_{i} $, $ i = 0, \nu $, respectively. The red line represents the escape region $ \Sigma_{e}^{\tau} $. The asymptotically stable limit cycle $ \Gamma_{G_{\tau}}^{s} $ is described by the closed magenta curve. The boundary equilibria $ E_{\nu}^{0} \in \Sigma_{\nu}^{\tau} $ and $ E_{0}^{+} \in \Sigma_{0}^{\tau} $ are described by the dark red and dark blue points, respectively, where $ E_{0}^{+} $ is a saddle point. In addition, the green, black, and gray points describe the pseudo-equilibrium $ PN \in \Sigma_{e}^{\tau} $ and the inner positive equilibria $ E_{i}^{1} \in \Sigma_{i}^{\tau} $, $ i = 0, \nu $, respectively. In regions Ⅶ to Ⅸ, we have that $ PN \in \Sigma_{e}^{\tau} $ and $ E_{i}^{1} \in \Sigma_{i}^{\tau} $, $ i = 0, \nu $, are positive inner equilibria of model (19) in $ \Omega $. Note that $ E_{i}^{1} \in \Sigma_{i}^{\tau} $, $ i = 0, \nu $, are locally asymptotically stable in region Ⅶ, $ E_{\nu}^{1} \in \Sigma_{\nu}^{\tau} $ is unstable and $ E_{0}^{1} \in \Sigma_{0}^{1} $ is globally asymptotically stable in region Ⅷ, and $ E_{i}^{1} \in \Sigma_{i}^{\tau} $, $ i = 0, \nu $, are unstable in region Ⅸ. In regions X to Ⅻ, we have that $ E_{0}^{1} \in \Sigma_{0}^{\tau} $, which is globally asymptotically stable in region X, and unstable in regions Ⅺ and Ⅻ

    Figure 16.  Phase portraits in bifurcation regions ⅫⅠ to XV of model (19) shown in Figure 13. The light red and light green trajectories are described by the vector fields $ G_{i} $, $ i = 0, \nu $, respectively. The red line represents the escape region $ \Sigma_{e}^{\tau} $. The asymptotically stable limit cycle $ \Gamma_{G_{\tau}}^{s} $ is described by the closed magenta curve. The boundary equilibria $ E_{\nu}^{0} \in \Sigma_{\nu}^{\tau} $ and $ E_{0}^{+} \in \Sigma_{0}^{\tau} $ are described by the dark red and dark blue points, respectively, where $ E_{0}^{+} $ is a saddle point. In addition, the gray point describes the positive inner equilibrium $ E_{\nu}^{1} \in \Sigma_{\nu}^{\tau} $, which is globally asymptotically stable in region ⅫⅠ, and unstable in regions ⅪⅤ and ⅩⅤ

  • [1] M. T. Alves and F. M. Hilker, Hunting cooperation and allee effects in predators, Journal of Theoretical Biology, 419 (2017), 13-22.  doi: 10.1016/j.jtbi.2017.02.002.
    [2] D. Bai and J. Tang, Global dynamics of a predator–prey system with cooperative hunting, Applied Sciences, 13 (2023), 8178.  doi: 10.3390/app13148178.
    [3] L. ChenF. Yang and Y.-l. Song, Stability and turing patterns of a predator-prey model with holling type ii functional response and allee effect in predator, Acta Mathematicae Applicatae Sinica, English Series, 39 (2023), 675-695.  doi: 10.1007/s10255-023-1084-1.
    [4] Y. ChowS. R.-J. Jang and H.-M. Wang, Cooperative hunting in a discrete predator–prey system, International Journal of Biomathematics, 13 (2020), 2050063.  doi: 10.1142/S1793524520500631.
    [5] C. C. Cortes and J. D. Hernandez, Population dynamics with protection and harvesting of a species, Revista Colombiana de Matemáticas, 56 (2022), 113-131. doi: 10.15446/recolma.v56n2.108369.
    [6] C. C. Cortés García, Identificación de una bifurcación de hopf con o sin parámetros, Revista de Ciencias, 21 (2017), 59-82.  doi: 10.25100/rc.v21i2.6699.
    [7] C. Cortés-García, Bifurcaciones en modelo Gause depredador - presa con discontinuidad, Revista de Matemática: Teoría y Aplicaciones, 28 (2021), 183-208.  doi: 10.15517/rmta.v28i2.36084.
    [8] R. S. DavisR. W. YarnellL. K. GentleA. UzalW. O. Mgoola and E. L. Stone, Prey availability and intraguild competition regulate the spatiotemporal dynamics of a modified large carnivore guild, Ecology and Evolution, 11 (2021), 7890-7904.  doi: 10.1002/ece3.7620.
    [9] F. DercoleA. GragnaniY. A. Kuznetsov and S. Rinaldi, Numerical sliding bifurcation analysis: An application to a relay control system, IEEE Transactions on Circuits and Systems Ⅰ: Fundamental Theory and Applications, 50 (2003), 1058-1063.  doi: 10.1109/TCSI.2003.815214.
    [10] F. Dercole and Y. A. Kuznetsov, Slidecont: An auto97 driver for bifurcation analysis of filippov systems, ACM Transactions on Mathematical Software (TOMS), 31 (2005), 95-119.  doi: 10.1145/1055531.1055536.
    [11] A. DhoogeW. Govaerts and Y. A. Kuznetsov, Matcont: A matlab package for numerical bifurcation analysis of odes, ACM Transactions on Mathematical Software (TOMS), 29 (2003), 141-164.  doi: 10.1145/779359.779362.
    [12] C. C. C. Garcia, Estudo da descontinuidade para um modelo populacional.
    [13] C. C. García, Bifurcations in discontinuous mathematical models with control strategy for a species, Math. Biosci. Eng, 19 (2022), 1536-1558.  doi: 10.3934/mbe.2022071.
    [14] C. C. García, Bifurcations in a discontinuous leslie-gower model with harvesting and alternative food for predators and constant prey refuge at low density, Mathematical Biosciences and Engineering, 19 (2022), 14029-14055.  doi: 10.3934/mbe.2022653.
    [15] C. C. García, Bifurcations on a discontinuous leslie–grower model with harvesting and alternative food for predators and holling ii functional response, Communications in Nonlinear Science and Numerical Simulation, 116 (2023), 106800.  doi: 10.1016/j.cnsns.2022.106800.
    [16] C. C. García and J. V. Cuenca, Impact of alternative food on predator diet in a leslie-gower model with prey refuge and holling ii functional response, Mathematical Biosciences and Engineering, 20 (2023), 13681-13703.  doi: 10.3934/mbe.2023610.
    [17] C. C. García and J. V. Cuenca, Additive allee effect on prey in the dynamics of a Gause predator-prey model with constant or proportional refuge on prey at low or high densities, Communications in Nonlinear Science and Numerical Simulation, 126 (2023), 107427, 27 pp. doi: 10.1016/j.cnsns.2023.107427.
    [18] M. GuardiaT. M. Seara and M. A. Teixeira, Generic bifurcations of low codimension of planar filippov systems, Journal of Differential Equations, 250 (2011), 1967-2023.  doi: 10.1016/j.jde.2010.11.016.
    [19] A. Janeiro-OteroT. M. NewsomeL. M. Van EedenW. J. Ripple and C. F. Dormann, Grey wolf (canis lupus) predation on livestock in relation to prey availability, Biological Conservation, 243 (2020), 108433.  doi: 10.1016/j.biocon.2020.108433.
    [20] A. M. KittleJ. K. BukombeA. R. E. SinclairS. A. R. Mduma and J. M. Fryxell, Landscape-level movement patterns by lions in western serengeti: Comparing the influence of inter-specific competitors, habitat attributes and prey availability, Movement Ecology, 4 (2016), 1-18.  doi: 10.1186/s40462-016-0082-9.
    [21] Y. A. KuznetsovS. Rinaldi and A. Gragnani, One-parameter bifurcations in planar filippov systems, International Journal of Bifurcation and Chaos, 13 (2003), 2157-2188.  doi: 10.1142/S0218127403007874.
    [22] W. LiL. Huang and J. Wang, Global Asymptotical Stability and Sliding Bifurcation Analysis of a general Filippov-type predator-prey model with a refuge, Applied Mathematics and Computation, 405 (2021), 126263.  doi: 10.1016/j.amc.2021.126263.
    [23] J. Luo and Y. Zhao, Bifurcation analysis of a non-smooth prey–predator model by a differential linear complementarity system, Mathematics and Computers in Simulation, 205 (2023), 581-599.  doi: 10.1016/j.matcom.2022.10.016.
    [24] P. MajumdarS. DebnathB. MondalS. Sarkar and U. Ghosh, Complex dynamics of a prey-predator interaction model with holling type-ii functional response incorporating the effect of fear on prey and non-linear predator harvesting, Rendiconti del Circolo Matematico di Palermo Series 2, 72 (2023), 1017-1048.  doi: 10.1007/s12215-021-00701-y.
    [25] L. D. MechD. W. Smith and  D. R. MacNultyWolves on the Hunt: The Behavior of Wolves Hunting Wild Prey, University of Chicago Press, 2015.  doi: 10.7208/chicago/9780226255286.001.0001.
    [26] H. MollaS. SarwardiS. R. Smith and M. Haque, Dynamics of adding variable prey refuge and an allee effect to a predator–prey model, Alexandria Engineering Journal, 61 (2022), 4175-4188.  doi: 10.1016/j.aej.2021.09.039.
    [27] B. MondalS. Sarkar and U. Ghosh, Complex dynamics of a generalist predator–prey model with hunting cooperation in predator, The European Physical Journal Plus, 137 (2021), 43.  doi: 10.1140/epjp/s13360-021-02272-4.
    [28] N. Mukherjee and M. Banerjee, Hunting cooperation among slowly diffusing specialist predators can induce stationary turing patterns, Physica A: Statistical Mechanics and its Applications, 599 (2022), 127417.  doi: 10.1016/j.physa.2022.127417.
    [29] K. G. V. Orsdol, Foraging behaviour and hunting success of lions in queen elizabeth national park, uganda, African Journal of Ecology, 22 (1984), 79-99.  doi: 10.1111/j.1365-2028.1984.tb00682.x.
    [30] S. PalN. PalS. Samanta and J. Chattopadhyay, Fear effect in prey and hunting cooperation among predators in a leslie-gower model, Mathematical Biosciences and Engineering, 16 (2019), 5146-5179.  doi: 10.3934/mbe.2019258.
    [31] N. C. PatiG. C. Layek and N. Pal, Bifurcations and organized structures in a predator-prey model with hunting cooperation, Chaos, Solitons & Fractals, 140 (2020), 110184.  doi: 10.1016/j.chaos.2020.110184.
    [32] B. PirayeshA. Pazirandeh and M. Akbari, Local bifurcation analysis in nuclear reactor dynamics by sotomayor's theorem, Annals of Nuclear Energy, 94 (2016), 716-731.  doi: 10.1016/j.anucene.2016.04.021.
    [33] V. Serebriakov and M. Dohnal, Trend prey predator model-analysis of gause model, Global Ecology and Conservation, 18 (2019), e00634. doi: 10.1016/j.gecco.2019.e00634.
    [34] P. E. Stander, Cooperative hunting in lions: The role of the individual, Behavioral Ecology and Sociobiology, 29 (1992), 445-454.  doi: 10.1007/BF00170175.
    [35] N. StollenwerkM. Aguiar and B. Kooi, Modelling holling type ii functional response in deterministic and stochastic food chain models with mass conservation, Ecological Complexity, 49 (2022), 100982.  doi: 10.1016/j.ecocom.2022.100982.
    [36] G. TangS. Tang and R. A. Cheke, Global analysis of a holling type ⅱ predator–prey model with a constant prey refuge, Nonlinear Dynamics, 76 (2014), 635-647.  doi: 10.1007/s11071-013-1157-4.
    [37] S. Toaha et al., Stability analysis of prey predator model with holling ii functional response and threshold harvesting for the predator, in Journal of Physics: Conference Series, 1341 (2019), 062025. doi: 10.1088/1742-6596/1341/6/062025.
    [38] J. Tong, 88.56 b2-4ac and b2-3ac, The Mathematical Gazette, 88 (2004), 511-513.  doi: 10.1017/S0025557200176168.
    [39] A. K. Umrao and P. K. Srivastava, Bifurcation analysis of a predator-prey model with allee effect and fear effect in prey and hunting cooperation in predator, Differential Equations and Dynamical Systems, 1-27.
    [40] K. Vishwakarma and M. Sen, Role of Allee Effect in prey and hunting cooperation in a generalist predator, Mathematics and Computers in Simulation, 190 (2021), 622-640.  doi: 10.1016/j.matcom.2021.05.023.
    [41] K. Vishwakarma and M. Sen, Influence of allee effect in prey and hunting cooperation in predator with holling type-iii functional response, Journal of Applied Mathematics and Computing, 68 (2022), 249–269. doi: 10.1007/s12190-021-01520-1.
    [42] Y. YaoT. Song and Z. Li, Bifurcations of a predator-prey system with cooperative hunting and holling Ⅲ functional response, Nonlinear Dynamics, 110 (2022), 915-932.  doi: 10.1007/s11071-022-07653-7.
    [43] S. YuJ. Liu and X. Lin, Multiple positive periodic solutions of a gause-type predator-prey model with allee effect and functional responses, AIMS Mathematics, 5 (2020), 6135-6148.  doi: 10.3934/math.2020394.
    [44] Q. Yue, Dynamics of a modified leslie–gower predator–prey model with holling-type ii schemes and a prey refuge, SpringerPlus, 5 (2016), 1-12.  doi: 10.1186/s40064-016-2087-7.
  • 加载中

Figures(16)

SHARE

Article Metrics

HTML views(780) PDF downloads(423) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return