[1]
|
M. Bardet, Étude des systèmes algébriques surdéterminés. Applications aux codes correcteurs et à la cryptographie, Université Pierre et Marie Curie - Paris VI, 2004, https://tel.archives-ouvertes.fr/tel-00449609.
|
[2]
|
M. Bardet, M. Bros, D. Cabarcas, P. Gaborit, R. Perlner, D. Smith-Tone, J.-P. Tillich and J. Verbel, Improvements of algebraic attacks for solving the rank decoding and MinRank problems, Advances in Cryptology – ASIACRYPT 2020, (eds. S. Moriai and H. Wang), Springer International Publishing, Cham, (2020), 507–536.
|
[3]
|
M. Bardet, J.-C. Faugère, B. Salvy and P.-J. Spaenlehauer, On the complexity of solving quadratic Boolean systems, Journal of Complexity, 29 (2013), 53-75.
doi: 10.1016/j.jco.2012.07.001.
|
[4]
|
M. Bardet, J.-C. Faugère, B. Salvy and B. Yang, Asymptotic behaviour of the degree of regularity of semi-regular polynomial systems, IN MEGA '05, Eighth International Symposium on Effective Methods in Algebraic Geometry, 2005.
|
[5]
|
D. J. Bernstein and B.-Y. Yang, Asymptotically faster quantum algorithms to solve multivariate quadratic equations, Post-Quantum Cryptography, Lecture Notes in Comput. Sci., Springer, Cham, 10786 (2018), 487-506.
doi: 10.1007/978-3-319-79063-3_23.
|
[6]
|
L. Bettale, J.-C. Faugère and L. Perret, Hybrid approach for solving multivariate systems over finite fields, J. Math. Cryptol., 3 (2009), 177-197.
doi: 10.1515/JMC.2009.009.
|
[7]
|
L. Bettale, J.-C. Faugère and L. Perret, Solving polynomial systems over finite fields: Improved analysis of the hybrid approach, ISSAC 2012 Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, ACM, New York, (2012), 67–74.
doi: 10.1145/2442829.2442843.
|
[8]
|
B. Buchberger, Bruno Buchberger's PhD thesis 1965: An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal, J. Symbolic Computation, 41 (2006), 475-511.
doi: 10.1016/j.jsc.2005.09.007.
|
[9]
|
J. Buchmann, D. Cabarcas, J. Ding and M. S. E. Mohamed, Flexible partial enlargement to accelerate Gröbner basis computation over $\mathbb{F}_{2}$, Progress in Cryptology – AFRICACRYPT, Springer Berlin Heidelberg, Berlin, Heidelberg, (eds. D. J. Bernstein and T. Lange), (2010), 69–81.
|
[10]
|
D. Cabarcas, Gröbner Bases Computation and Mutant Polynomials, PhD thesis, University of Cincinnati, 2011.
|
[11]
|
D. Cabarcas, D. Smith-Tone and J. A. Verbel, Key recovery attack for ZHFE, Post-Quantum Cryptography, Lecture Notes in Comput. Sci., Springer, Cham, 10346 (2017), 289-308.
doi: 10.1007/978-3-319-59879-6.
|
[12]
|
S. Cohen and C. Tomasi, Systems of Bilinear Equations, Technical report, Stanford University, Stanford, CA, USA, 1997.
|
[13]
|
N. Courtois, A. Klimov, J. Patarin and A. Shamir, Efficient algorithms for solving overdefined systems of multivariate polynomial equations, Advances in Cryptology: EUROCRYPT 2000 (Bruges), Lecture Notes in Comput. Sci., Springer, Berlin, 1807 (2000), 392-407.
doi: 10.1007/3-540-45539-6_27.
|
[14]
|
D. A. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, (Undergraduate Texts in Mathematics), 3$^{nd}$ edition, Undergraduate Texts in Mathematics, Springer, New York, 2007.
doi: 10.1007/978-0-387-35651-8.
|
[15]
|
J. Ding and D. Schmidt, Solving degree and degree of regularity for polynomial systems over a finite fields, Number Theory and Cryptography, Lecture Notes in Comput. Sci., 8260, Springer, Heidelberg, (2013), 34–49.
doi: 10.1007/978-3-642-42001-6_4.
|
[16]
|
J.-C. Faugère, A new efficient algorithm for computing Gröbner bases (F4), J. Pure Appl. Algebra, 139 (1999), 61-88.
doi: 10.1016/S0022-4049(99)00005-5.
|
[17]
|
J.-C. Faugère, A new efficient algorithm for computing Gröbner bases without reduction to zero (F5), Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, ACM, New York, (2002), 75–83.
doi: 10.1145/780506.780516.
|
[18]
|
J.-C. Faugère, K. Horan, M. Kahrobaei Delaram, M. Kaplan, E. Kashefi and L. Perret, Quantum algorithm for solving multivariate quadratic equations, IACR Cryptology ePrint Archive, 2017 (2017), 1236.
|
[19]
|
J.-C. Faugère, M. Safey El Din and P.-J. Spaenlehauer, Gröbner bases of bihomogeneous ideals generated by polynomials of bidegree (1, 1): Algorithms and complexity, J. Symbolic Comput., 46 (2011), 406-437.
doi: 10.1016/j.jsc.2010.10.014.
|
[20]
|
J.-C. Faugère, P.-J. Spaenlehauer and J. Svartz, Sparse Gröbner bases: The unmixed case, ISSAC 2014: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, ACM, New York, (2014), 178–185.
doi: 10.1145/2608628.2608663.
|
[21]
|
C. R. Johnson and J. A. Link, Solution theory for complete bilinear systems of equations, Numer. Linear Algebra Appl., 16 (2009), 929-934.
doi: 10.1002/nla.676.
|
[22]
|
A. Kipnis and A. Shamir, Cryptanalysis of the HFE public key cryptosystem by relinearization, Advances in Cryptology – CRYPTO 99, 1666, Springer, Berlin, 1999, 19–30.
doi: 10.1007/3-540-48405-1_2.
|
[23]
|
D. Lazard, Gröbner-bases, Gaussian elimination and resolution of systems of algebraic equations, Computer Algebra, EUROCAL, European Computer Algebra, 162 (1983), 146-156.
doi: 10.1007/3-540-12868-9_99.
|
[24]
|
M. S. E. Mohamed, W. S. A. E. Mohamed, J. Ding and J. Buchmann, MXL2: Solving polynomial equations over GF(2) using an improved mutant strategy, Post-Quantum Cryptography, Lecture Notes in Comput. Sci., Springer, Berlin, 5299, 2008,203–215.
doi: 10.1007/978-3-540-88403-3_14.
|
[25]
|
J. Vates and D. Smith-Tone, Key recovery attack for all parameters of HFE-, Post-Quantum Cryptography, Lecture Notes in Comput. Sci., Springer, Cham, 10346 (2017), 272-288.
doi: 10.1007/978-3-319-59879-6_16.
|
[26]
|
J. Verbel, J. Baena, D. Cabarcas, R. Perlner and D. Smith-Tone, On the complexity of "superdetermined'' minRank instances, Post-Quantum Cryptography, Lecture Notes in Comput. Sci., Springer, Cham, (eds. J. Ding and R. Steinwandt), 11505 (2019), 167–186.
doi: 10.1007/978-3-030-25510-7_10.
|
[27]
|
L. A. Vinh, On the solvability of systems of bilinear equations in finite fields, Proc. Amer. Math. Soc., 137 (2009), 2889–2898. https://arXiv.org/abs/0903.1156.
doi: 10.1090/S0002-9939-09-09947-X.
|
[28]
|
D. Wiedemann, Solving sparse linear equations over finite fields, IEEE Trans. Inform. Theory, 32 (1986), 54-62.
doi: 10.1109/TIT.1986.1057137.
|
[29]
|
D. Yang, Solution Theory for Systems of Bilinear Equations, Ph.D thesis, College of William and Mary, 2011.
|