Nothing Special   »   [go: up one dir, main page]

\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Two classes of new optimal ternary cyclic codes

  • * Corresponding author: Xiwang Cao

    * Corresponding author: Xiwang Cao 

The first author is supported by the National Natural Science Foundation of China (No. 12001475) and the Natural Science Foundation of Jiangsu Province (No. BK20201059). The second author is supported by the National Natural Science Foundation of China (No. 12171241). The third author is supported by the National Natural Science Foundation of China (No. 11801070).

Abstract / Introduction Full Text(HTML) Figure(0) / Table(5) Related Papers Cited by
  • Due to their wide applications in consumer electronics, data storage systems and communication systems, cyclic codes have been an interesting subject of study in recent years. The construction of optimal cyclic codes over finite fields is important as they have maximal minimum distance once the length and dimension are given. In this paper, we present two classes of new optimal ternary cyclic codes $ \mathcal{C}_{(2,v)} $ by using monomials $ x^2 $ and $ x^v $ for some suitable $ v $ and explain the novelty of the codes. Furthermore, the weight distribution of $ \mathcal{C}_{(2,v)}^{\perp} $ for $ v = \frac{3^{m}-1}{2}+2(3^{k}+1) $ is determined.

    Mathematics Subject Classification: 94B15, 11T71.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Value distribution of $ T(a,b) $

    Value Frequency
    0 $ (3^{m}-1)(3^{m}-2\cdot3^{m-1}+1) $
    $ 2\cdot3^{m} $ $ 1 $
    $ 3^{\frac{m+1}{2}} $ $ (3^{m}-1)(3^{m-1}+3^{\frac{m-1}{2}}) $
    $ - 3^{\frac{m+1}{2}} $ $ (3^{m}-1)(3^{m-1}-3^{\frac{m-1}{2}}) $
     | Show Table
    DownLoad: CSV

    Table 2.  Weight Distribution of $ \mathcal{C}_{(2,v)}^{\perp} $

    Weight Frequency
    $ 0 $ 1
    $ 3^{m}-3^{m-1}-3^{\frac{m-1}{2}} $ $ (3^{m}-1)(3^{m-1}+3^{\frac{m-1}{2}}) $
    $ 2\cdot 3^{m-1} $ $ (3^{m}-1)(3^{m}-2\cdot3^{m-1}+1) $
    $ 3^{m}-3^{m-1}+ 3^{\frac{m-1}{2}} $ $ (3^{m}-1)(3^{m-1}-3^{\frac{m-1}{2}}) $
     | Show Table
    DownLoad: CSV

    Table 3.  Known optimal ternary cyclic codes $ C_{1,e} $

    Conditions Case
    $ m $ is odd, $ e $ is even, $ e(3^{s}-1) \equiv 3^{t}-1 \pmod{ 3^{m}-1} $,
    $ 1\leq s,t\leq m-1 $, $ \gcd(m,s)=\gcd(m,t)=1 $, $ \gcd(3^{m}-1,e-1)=1 $.[22]
    $ 1) $
    $ e(3^{s}+1) \equiv 3^{t}+1 \pmod {3^{m}-1} $, $ 0\leq s,t\leq m-1 $, $ \gcd(3^{m}-1,e-1)= $
    $ \gcd(3^{m}-1,3^{t}-e)=1 $, $ m $ is either odd or even with $ \gcd(m,t)=1 $ and $ \frac{m}{\gcd(m,s)} $ is odd.[22]
    $ 2) $
    $ e \equiv \frac{3^{m}-1}{2}+3^{s}+1 \pmod {3^{m}-1} $, $ m $ is even, $ m/\gcd(m,s) $ is odd.[22] $ 3) $
    $ e \equiv \frac{3^{m}-1}{2}+3^{s}-1 \pmod {3^{m}-1} $, $ m $ is even, $ \gcd(m,s)= $
    $ \gcd(3^{s}-2,3^{m}-1)=1 $, $ s=1,3,5,7,9 $.[22]
    $ 4) $
    $ e = 3^{s}+5 $, $ m\equiv 0 \pmod 4 $ and $ s=\frac{m}{2} $ or $ m\equiv 2 \pmod 4 $ and $ s=\frac{m+2}{2} $.[10] $ 5) $
    $ m $ is odd and $ 1\leq s <m $, $ e = \frac{3^{s}+7}{2} $ if s is even, $ e =\frac{3^{m}-1}{2}+ \frac{3^{s}+7}{2} $
    if s is odd.[28]
    $ 6) $
    $ e = \frac{3^{\frac{m+1}{2}}+5}{2} $ if $ m \equiv 1 \pmod 4 $, $ e =\frac{3^{m}-1}{2}+ \frac{3^{\frac{m+1}{2}}+5}{2} $ if $ m \equiv 3 \pmod 4 $. [28] $ 7) $
    $ m $ is odd, $ e $ is even, $ e(3^{s}+1) \equiv \frac{3^{m}+1}{2} \pmod{ 3^{m}-1} $, $ 0\leq s \leq m-1 $.[28] $ 8) $
    $ 3 \nmid m $, $ 5e \equiv 2 \pmod{ 3^{m}-1} $.[28] $ 9) $
    $ 5 \nmid m $, $ 7e \equiv 2 \pmod{ 3^{m}-1} $, $ \gcd(m,6)=1 $ or $ m\equiv 3 \pmod{ 6} $.[28] $ 10) $
    $ m >2 $, $ 3 \nmid m $ and $ 5 \nmid m $, $ 5e \equiv 4 \pmod{ 3^{m}-1} $.[28] $ 11) $
     | Show Table
    DownLoad: CSV

    Table 4.  Known optimal ternary cyclic codes $ C_{1,e} $

    $ e $ Conditions Case
    2 $ m \geq 2 $[1] $ 12) $
    $ \frac{3^{s}+1}{2} $ $ s $ is odd, $ m \geq 2 $, $ \gcd(m,s)=1 $.[1] $ 13) $
    $ 3^{s}+1 $ $ m \geq 2 $, $ m/\gcd(m,s) $ is odd.[1] $ 14) $
    $ 3^{m-1}-1, \frac{3^{m}+1}{4}+\frac{3^{m}-1}{2} $ $ m \geq 3 $, $ m $ is odd.[4] $ 15) $
    $ 3^{\frac{m+1}{2}}-1 $ $ m $ is odd.[4] $ 16) $
    $ \frac{3^{m}-3}{2} $ $ m \geq 5 $, $ m $ is odd.[4] $ 17) $
    $ (3^{\frac{m+1}{4}}-1)(3^{\frac{m+1}{2}}+1) $ $ m \equiv 3 \pmod 4 $.[4] $ 18) $
    $ \frac{3^{(m+1)/2}-1}{2}+\frac{3^{m}-1}{2}, \frac{3^{m+1}-1}{8}+\frac{3^{m}-1}{2} $ $ m \equiv 1 \pmod 4 $.[4] $ 19) $
    $ \frac{3^{(m+1)/2}-1}{2}, \frac{3^{m+1}-1}{8} $ $ m \equiv 3 \pmod 4 $.[4] $ 20) $
    $ \frac{3^{s}-1}{2} $ $ m $ is odd, $ s $ is even,
    $ \gcd(m,s)=\gcd(m,s-1)=1 $.[4]
    $ 21) $
    $ 3^{s}-1 $ $ \gcd(m,s)=\gcd(3^{m}-1,3^{s}-2)=1 $.[4] $ 22) $
    $ \frac{3^{m-1}}{2}-2, \frac{3^{m-1}}{2}+10 $ $ m \equiv 2 \pmod{4} $.[13] $ 23) $
    $ \frac{3^{m-1}}{2}-5, \frac{3^{m-1}}{2}+7 $ $ m $ is odd.[13] $ 24) $
    $ 2(3^{m-1}-1), 5(3^{m-1}-1), 16 $ $ m $ is odd, $ 3\nmid m $.[13] $ 25) $
    $ 2(3^{s}+1) $ $ m $ is odd.[14] $ 26) $
     | Show Table
    DownLoad: CSV

    Table 5.  Known optimal ternary cyclic codes $ C_{u,v'} $

    $ u $ $ v' $ Conditions Case
    $ \frac{3^{m}+1}{2} $ $ \frac{3^{s}+1}{2} $ $ m $ is odd, $ s $ is even and $ \gcd(m,s)=1 $.[30] $ 27) $
    $ 2 \cdot 3^{\frac{m-1}{2}}+1 $ $ m $ is odd.[6] $ 28) $
    $ 3^{s}+2 $ $ m $ is odd, such that $ 9\nmid m $ and $ 4s \equiv1 \pmod m $.[25] $ 29) $
     | Show Table
    DownLoad: CSV
  • [1] C. CarletC. Ding and J. Yuan, Linear codes from perfect nonlinear mappings and their secret sharing schemes, IEEE Trans. Inf. Theory, 51 (2005), 2089-2102.  doi: 10.1109/TIT.2005.847722.
    [2] R. S. Coulter, The number of rational points of a class of Artin-Schreier curves, Finite Fields Appl., 8 (2002), 397-413.  doi: 10.1006/ffta.2001.0348.
    [3] P. Delsarte, On subfield subcodes of modified Reed-Solomon codes, IEEE Trans. Inf. Theory, 21 (1975), 575-576.  doi: 10.1109/tit.1975.1055435.
    [4] C. Ding and T. Helleseth, Optimal ternary cyclic codes from monomials, IEEE Trans. Inf. Theory, 59 (2013), 5898-5904.  doi: 10.1109/TIT.2013.2260795.
    [5] C. Ding and S. Ling, A $q$-polynomial approach to cyclic codes, Finite Fields Appl., 20 (2013), 1-14.  doi: 10.1016/j.ffa.2012.12.005.
    [6] C. FanN. Li and Z. Zhou, A class of optimal ternary cyclic codes and their duals, Finite Fields Appl., 37 (2016), 193-202.  doi: 10.1016/j.ffa.2015.10.004.
    [7] W. FangJ. Wen and F. Fu, A $q$-polynomial approach to constacyclic codes, Finite Fields Appl., 47 (2017), 161-182.  doi: 10.1016/j.ffa.2017.06.009.
    [8] K. Feng and J. Luo, Weight distribution of some reducible cyclic codes, Finite Fields Appl., 14 (2008), 390-409.  doi: 10.1016/j.ffa.2007.03.003.
    [9] T. Feng, On cyclic codes of length $2^{2^{r}}-1$ with two zeros whose dual codes have three weights, Des. Codes Crypogr., 62 (2012), 253-258.  doi: 10.1007/s10623-011-9514-0.
    [10] D. Han and H. Yan, On an open problem about a class of optimal ternary cyclic codes, Finite Fields Appl., 59 (2019), 335-343.  doi: 10.1016/j.ffa.2019.07.002.
    [11] W. Huffman and  V. PlessFoundamentals of Error-Correcting Codes, Cambridge University Press, Cambridge, 2003.  doi: 10.1017/CBO9780511807077.
    [12] C. Li and Q. Yue, Weight distributions of two classes of cyclic codes with respect to two distinct order elements, IEEE Trans. Inf. Theory, 60 (2014), 296-303.  doi: 10.1109/TIT.2013.2287211.
    [13] N. LiC. LiT. HellesethC. Ding and X. Tang, Optimal ternary cyclic codes with minimun distance four and five, Finite Fields Appl., 30 (2014), 100-120.  doi: 10.1016/j.ffa.2014.06.001.
    [14] N. Li, Z. Zhou and T. Helleseth, On a conjecture about a class of optimal ternary cyclic codes, Signal Design and its Applications in Communications (IWSDA), seventh Intertional Workshop on Signal, (2015). doi: 10.1109/IWSDA.2015.7458415.
    [15] D. LiaoX. KaiS. Zhu and P. Li, A class of optimal cyclic codes with two zeros, IEEE Commun. Lett., 23 (2019), 1293-1296.  doi: 10.1109/LCOMM.2019.2921330.
    [16] Y. LiuH. Yan and C. Liu, A class of six-weight cyclic codes and their weight distribution, Des. Codes Crypogr., 77 (2015), 1-9.  doi: 10.1007/s10623-014-9984-y.
    [17] Y. LiuX. Cao and W. Lu, On some conjectures about optimal ternary cyclic codes, Des. Codes Crypogr., 88 (2020), 297-309.  doi: 10.1007/s10623-019-00679-w.
    [18] J. Luo and K. Feng, Cyclic codes and sequences form generalized Coulter-Matthews function, IEEE Trans. Inf. Theory, 54 (2008), 5345-5353.  doi: 10.1109/TIT.2008.2006394.
    [19] C. MaL. ZengY. LiuD. Feng and C. Ding, The weight enumerator of a class of cyclic codes, IEEE Trans. Inf. Theory, 57 (2011), 397-402.  doi: 10.1109/TIT.2010.2090272.
    [20] M. ShiS. Yang and S. Zhu, Good p-ary quasicyclic codes from cyclic codes over $\mathbb{F}_{p}+v\mathbb{F}_{p}$, J. Syst. Sci. Complex., 25 (2012), 375-384.  doi: 10.1007/s11424-012-0076-7.
    [21] M. Shi and Y. Zhang, Quasi-twisted codes with constacyclic constituent codes, Finite Fields Appl., 39 (2016), 159-178.  doi: 10.1016/j.ffa.2016.01.010.
    [22] L. Wang and G. Wu, Several classes of optimal ternary cyclic codes with minimal distance four, Finite Fields Appl., 40 (2016), 126-137.  doi: 10.1016/j.ffa.2016.03.007.
    [23] M. Xiong and N. Li, Optimal cyclic codes with generalized Niho-type zeros and the weight distribution, IEEE Trans. Inf. Theory, 61 (2015), 4914-4922.  doi: 10.1109/TIT.2015.2451657.
    [24] G. XuX. Cao and S. Xu, Optimal $p$-ary cyclic codes with minimum distance four from monomials, Cryptogr. Commun., 8 (2016), 541-554.  doi: 10.1007/s12095-015-0159-0.
    [25] H. YanZ. Zhou and X. Du, A family of optimal ternary cyclic codes from the Niho-type exponent, Finite Fields Appl., 54 (2018), 101-112.  doi: 10.1016/j.ffa.2018.08.004.
    [26] S. YangZ. Yao and C. Zhao, The weight distributions of two classes of $p$-ary cyclic codes with few weights, Finite Fields Appl., 44 (2017), 76-91.  doi: 10.1016/j.ffa.2016.11.004.
    [27] X. ZengL. HuW. JiangQ. Yue and X. Cao, The weight distribution of a class of $p$-ary cyclic codes, Finite Fields Appl., 16 (2010), 56-73.  doi: 10.1016/j.ffa.2009.12.001.
    [28] Z. Zha and L. Hu, New classes of optimal ternary cyclic codes with minimum distance four, Finite Fields Appl., 64 (2020), 1016710. doi: 10.1016/j.ffa.2020.101671.
    [29] Y. ZhouX. KaiS. Zhu and J. Li, On the minimum distance of negacyclic codes with two zeros, Finite Fields Appl., 55 (2019), 134-150.  doi: 10.1016/j.ffa.2018.09.006.
    [30] Z. Zhou and C. Ding, A class of three-weight cyclic codes, Finite Fields Appl., 25 (2014), 79-93.  doi: 10.1016/j.ffa.2013.08.005.
  • 加载中

Tables(5)

SHARE

Article Metrics

HTML views(2674) PDF downloads(697) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return