Nothing Special   »   [go: up one dir, main page]

\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Three classes of partitioned difference families and their optimal constant composition codes

Abstract / Introduction Full Text(HTML) Figure(0) / Table(2) Related Papers Cited by
  • Cyclotomy, firstly introduced by Gauss, is an important topic in Mathematics since it has a number of applications in number theory, combinatorics, coding theory and cryptography. Depending on $ v $ prime or composite, cyclotomy on a residue class ring $ {\mathbb{Z}}_{v} $ can be divided into classical cyclotomy or generalized cyclotomy. Inspired by a foregoing work of Zeng et al. [40], we introduce a generalized cyclotomy of order $ e $ on the ring $ {\rm GF}(q_1)\times {\rm GF}(q_2)\times \cdots \times {\rm GF}(q_k) $, where $ q_i $ and $ q_j $ ($ i\neq j $) may not be co-prime, which includes classical cyclotomy as a special case. Here, $ q_1 $, $ q_2 $, $ \cdots $, $ q_k $ are powers of primes with an integer $ e|(q_i-1) $ for any $ 1\leq i\leq k $. Then we obtain some basic properties of the corresponding generalized cyclotomic numbers. Furthermore, we propose three classes of partitioned difference families by means of the generalized cyclotomy above and $ d $-form functions with difference balanced property. Afterwards, three families of optimal constant composition codes from these partitioned difference families are obtained, and their parameters are also summarized.

    Mathematics Subject Classification: 11T22; 14G50.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  $ (A, K, \lambda) $ PDF constructed in this paper

    $ A $ $ K $ $ \lambda $ Constraints Ref.
    $ R\times {\mathbb{Z}}_{e} $ $ [{(e-1)}^{\frac{ev-1}{e-1}}1^{1}] $ $ e-2 $ $ v=q_{1} q_{2} \cdots q_{k} $, $ e(e-1)|(q_i-1) $ for $ 1\leq i\leq k $ Theorem 3.4
    $ R $ $ [e^{\frac{v-1}{2e}}1^{\frac{v+1}{2}}] $ $ \frac{e-1}{2} $ $ v=q_{1} q_{2} \cdots q_{k} $, $ e\geq 3 $ is odd such that $ e|(q_i-1) $ for $ 1\leq i\leq k $ Theorem 3.6
    $ {\mathbb{Z}}_{\frac{q^m-1}{e}} \times {\mathbb{Z}}_{k} $ $ [k\frac{q^{m-1}-1}{e}^{1}1^{k \frac{q^m-q^{m-1}}{e}}] $ $ k \frac{q^{m-2}-1}{e} $ $ e |(q-1), \operatorname{gcd}(e, m)=1 $, $ 1 \leq k \leq e $, $ m>2 $ Theorem 3.9
     | Show Table
    DownLoad: CSV

    Table 2.  Some optimal CCCs with parameters $ (n, M, d, [\omega_0, \omega_1, \cdots, \omega_{m-1}])_m $ from our PDFs

    Parameters Constraints
    $ (e v, e v, e v-e+2, [{(e-1)}^{\frac{ev-1}{e-1}}1^{1}])_\frac{ev+e-2}{e-1} $ $ v=q_{1} q_{2} \cdots q_{k} $, $ e(e-1)|(q_i-1) $ for $ 1\leq i\leq k $
    $ \left(v, v, v-\frac{e-1}{2}, [e^{\frac{v-1}{2e}}1^{\frac{v+1}{2}}]\right)_{\frac{v-1}{2 e}+\frac{v+1}{2}} $ $ v=q_{1} q_{2} \cdots q_{k} $, $ e\geq 3 $ is odd such that $ e|(q_i-1) $ for $ 1\leq i\leq k $
    $ \left(k \frac{q^{m}-1}{e}, k \frac{q^{m}-1}{e}, k \frac{q^{m-2}-1}{e}, [1^{k \frac{q^m-q^{m-1}}{e}} k\frac{q^{m-1}-1}{e}^{1}]\right)_{k \frac{q^m-q^{m-1}}{e}+1} $ $ e|(q-1), \gcd(e, m)=1, $ $ 1\leq k\leq e, m>2 $
     | Show Table
    DownLoad: CSV
  • [1] K. ArasuJ. Dillon and K. Player, Character sum factorizations yield sequences with ideal two-level autocorrelation, IEEE Trans. Inf. Theory, 61 (2015), 3276-3304.  doi: 10.1109/TIT.2015.2418204.
    [2] M. Buratti, Hadamard partitioned difference families and their descendants, Cryptogr. Commun., 11 (2019), 557-562.  doi: 10.1007/s12095-018-0308-3.
    [3] M. Buratti, On disjoint $(v, k, k-1)$ difference families, Des. Codes Cryptogr., 87 (2019), 745-755.  doi: 10.1007/s10623-018-0511-4.
    [4] M. Buratti and D. Jungnickel, Partitioned difference families versus zero-difference balanced functions, Des. Codes Cryptogr., 87 (2019), 2461-2467.  doi: 10.1007/s10623-019-00632-x.
    [5] M. Buratti, J. Yan and C. Wang, From a 1-rotational RBIBD to a partitioned difference family, Electron. J. Comb., 17 (2010), pp. R139.
    [6] H. CaiZ. ZhouX. Tang and Y. Miao, Zero-difference balanced functions with new parameters and their applications, IEEE Trans. Inf. Theory, 63 (2017), 4379-4387.  doi: 10.1109/TIT.2017.2675441.
    [7] Y. Chang and C. Ding, Constructions of external difference families and disjoint difference families, Des. Codes Cryptogr., 40 (2006), 167-185.  doi: 10.1007/s10623-006-0005-7.
    [8] W. Chu and C. Colbourn, Optimal frequency-hopping sequences via cyclotomy, IEEE Trans. Inf. Theory, 51 (2005), 1139-1141.  doi: 10.1109/TIT.2004.842708.
    [9] J. Chung and K. Yang, $k$-fold cyclotomy and its application to frequency-hopping sequences, IEEE Trans. Inf. Theory, 57 (2011), 2306-2317.  doi: 10.1109/TIT.2011.2112235.
    [10] C. Ding, Cyclic codes from cyclotomic sequences of order four, Finite Fields Appl., 23 (2013), 8-34.  doi: 10.1016/j.ffa.2013.03.006.
    [11] C. Ding, Optimal constant composition codes from zero-difference balanced functions, IEEE Trans. Inf. Theory, 54 (2008), 5766-5770.  doi: 10.1109/TIT.2008.2006420.
    [12] C. Ding, Optimal and perfect difference systems of sets, J. Comb. Theory, Series A, 116 (2009), 109-119.  doi: 10.1016/j.jcta.2008.05.007.
    [13] C. Ding and Y. Tan, Zero-difference balanced functions with applications, J. Stat. Theory and Practice, 6 (2012), 3-19.  doi: 10.1080/15598608.2012.647479.
    [14] C. Ding and J. Yin, Combinatorial constructions of optimal constant-composition codes, IEEE Trans. Inf. Theory, 51 (2005), 3671-3674.  doi: 10.1109/TIT.2005.855612.
    [15] C. Ding and T. Helleseth, New generalized cyclotomy and its applications, Finite Fields Appl., 4 (1998), 140-166.  doi: 10.1006/ffta.1998.0207.
    [16] C. Ding and T. Helleseth, Generalized cyclotomic codes of length $p_{1}^{e_{1}}\cdots p_{t}^{e_{t}}$, IEEE Trans. Inf. Theory, 45 (1999), 467-474.  doi: 10.1109/18.748996.
    [17] C. Fan and G. Ge, A unified approach to Whiteman's and Ding-Helleseth's generalized cyclotomy over residue class rings, IEEE Trans. Inf. Theory, 60 (2014), 1326-1336.  doi: 10.1109/TIT.2013.2290694.
    [18] R. Fuji-HaraY. Miao and M. Mishima, Optimal frequency hopping sequences: A combinatorial approach, IEEE Trans. Inf. Theory, 50 (2004), 2408-2420.  doi: 10.1109/TIT.2004.834783.
    [19] C. F. Gauss, Disquisitiones Arithmeticae, New York, USA: Springer-Verlag, 1986.
    [20] G. GeY. Miao and Z. Yao, Optimal frequency hopping sequences: Auto- and cross-correlation properties, IEEE Trans. Inf. Theory, 55 (2009), 867-879.  doi: 10.1109/TIT.2008.2009856.
    [21] B. GordonW. H. Mills and L. R. Welch, Some new difference sets, Canad. J. Math., 14 (1962), 614-625.  doi: 10.4153/CJM-1962-052-2.
    [22] Y. Han and K. Yang, On the Sidel'nikov sequences as frequency-hopping sequences, IEEE Trans. Inf. Theory, 55 (2009), 4279-4285.  doi: 10.1109/TIT.2009.2025569.
    [23] T. Helleseth and G. Gong, New nonbinary sequences with ideal two-level autocorrelation, IEEE Trans. Inf. Theory, 48 (2002), 2868-2872.  doi: 10.1109/TIT.2002.804052.
    [24] H. HuS. ShaoG. Gong and T. Helleseth, The proof of Lin's conjecture via the decimation-Hadamard transform, IEEE Trans. Inf. Theory, 60 (2013), 5054-5064.  doi: 10.1109/TIT.2014.2327625.
    [25] L. Hu and Q. Yue, Gauss periods and codebooks from generalized cyclotomic sets of order four, Des. Codes Cryptogr., 69 (2013), 233-246.  doi: 10.1007/s10623-012-9648-8.
    [26] A. Klapper, $d$-form sequence: Families of sequences with low correlaltion values and large linear spans, IEEE Trans. Inf. Theory, 51 (1995), 1469-1477.  doi: 10.1109/18.370143.
    [27] S. LiH. Wei and G. Ge, Generic constructions for partitioned difference families with applications: A unified combinatorial approach, Des. Codes Cryptogr., 82 (2017), 583-599.  doi: 10.1007/s10623-016-0182-y.
    [28] H. A. Lin, From cyclic Hadamard difference sets to perfectly balanced sequences, Ph.D. thesis, University of Southern California, 1998.
    [29] J. LiuY. JiangQ. Zheng and D. Lin, A new construction of zero-difference balanced functions and two applications, Des. Codes Cryptogr., 87 (2019), 2251-2265.  doi: 10.1007/s10623-019-00616-x.
    [30] Y. LuoF. FuA. Vinck and W. Chen, On constant-composition codes over ${{\mathbb{Z}}_{q}}$, IEEE Trans. Inf. Theory, 49 (2003), 3010-3016.  doi: 10.1109/TIT.2003.819339.
    [31] J.-S. No, New cyclic difference sets with Singer parameters constructed from $d$-homogeneous functions, Des. Codes Cryptogr., 33 (2004), 199-213.  doi: 10.1023/B:DESI.0000036246.52472.81.
    [32] T. Storer, Cyclotomy and Difference Sets, Chicago: Markham Pub. Co., 1967.
    [33] Q. Wang and Y. Zhou, Sets of zero-difference balanced functions and their applications, Adv. Math. Commun., 8 (2014), 83-101.  doi: 10.3934/amc.2014.8.83.
    [34] X. Wang and J. Wang, Partitioned difference families and almost difference sets, J. Stat. Plan. Inference, 141 (2011), 1899-1909.  doi: 10.1016/j.jspi.2010.12.002.
    [35] A. L. Whiteman, A family of difference sets, Illinois J. Math., 6 (1962), 107-121.  doi: 10.1215/ijm/1255631810.
    [36] R. M. Wilson, Cyclotomic and difference families in elementary abelian groups, J. Number Theory, 4 (1972), 17-47.  doi: 10.1016/0022-314X(72)90009-1.
    [37] Y. Yang, Z. Zhou and X. Tang, Two classes of zero-difference balanced functions and their optimal constant composition codes, in Proceedings of 2016 IEEE International Symposium on Information Theory, (2016), 1327–1330. doi: 10.1109/TIT.2008.2006420.
    [38] Z. YiZ. Lin and L. Ke, A generic method to construct zero-difference balanced functions, Cryptogr. Commun., 10 (2018), 591-609.  doi: 10.1007/s12095-017-0247-4.
    [39] J. YinX. Shan and Z. Tian, Constructions of partitioned difference families, Eur. J. Comb., 29 (2008), 1507-1519.  doi: 10.1016/j.ejc.2007.06.006.
    [40] X. ZengH. CaiX. Tang and Y. Yang, Optimal frequency hopping sequences of odd length, IEEE Trans. Inf. Theory, 59 (2013), 3237-3248.  doi: 10.1109/TIT.2013.2237754.
    [41] Z. Zha and L. Hu, Cyclotomic constructions of zero-difference balanced functions with applications, IEEE Trans. Inf. Theory, 61 (2015), 1491–1495. doi: 10.1109/TIT.2014.2388231.
    [42] Z. ZhouX. TangD. Wu and Y. Yang, Some new classes of zero-difference balanced functions, IEEE Trans. Inf. Theory, 58 (2012), 139-145.  doi: 10.1109/TIT.2011.2171418.
  • 加载中

Tables(2)

SHARE

Article Metrics

HTML views(2955) PDF downloads(590) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return