Based on the existence of designs for the derived and residual parameters of admissible parameter sets of designs over finite fields we obtain a new infinite series of designs over finite fields for arbitrary prime powers $q$ with parameters $2\text{-}(8,4,\frac{(q^6-1)(q^3-1)}{(q^2-1)(q-1)};q)$ as well as designs with parameters $2\text{-}(10,4,85λ;2)$, $2\text{-}(10,5,765λ;2)$, $2\text{-}(11,5,6205λ;2)$, $2\text{-}(11,5,502605λ;2)$, and $2\text{-}(12,6,423181λ;2)$ for $λ = 7,12,19,21,22,24,31,36,42,43,48,49,55,60,63$.
Citation: |
Table 1.
[1] | M. Braun, Designs over the binary field from the complete monomial group, Australas. J. Combin., 67 (2017), 470-475. |
[2] | M. Braun, Some new designs over finite fields, Bayreuth. Math. Schr., 74 (2005), 58-68. |
[3] | M. Braun, T. Etzion, P. R. J. Östergård, A. Vardy and A. Wassermann, Existence of q-analogs of steiner systems, Forum Math. Pi, 4 (2016), e7, 14pp. doi: 10.1017/fmp.2016.5. |
[4] | M. Braun, A. Kerber and R. Laue, Systematic construction of q-analogs of designs, Des. Codes Cryptogr., 34 (2005), 55-70. doi: 10.1007/s10623-003-4194-z. |
[5] | M. Braun, M. Kiermaier, A. Kohnert and R. Laue, Large sets of subspace designs, J. Combin. Theory Ser. A, 147 (2017), 155-185. doi: 10.1016/j.jcta.2016.11.004. |
[6] | M. Braun, A. Kohnert, P. R. J. Östergård and A. Wassermann, Large sets of t-designs over finite fields, J. Combin. Theory Ser. A, 124 (2014), 195-202. doi: 10.1016/j.jcta.2014.01.008. |
[7] | S. Braun, Construction of q-analogs of combinatorial designs, ALCOMA 2010, Thurnau, 2010. |
[8] | M. Braun, M. Kiermaier and A. Wassermann, q-analogs of designs: subspace designs, In M. Greferath, M.O. Pavčević, N. Silberstein, and M.A. Vázquez-Castro, editors, Network Coding and Subspace Designs, Springer International Publishing, (2018), 171-211. |
[9] | M. Braun, M. Kiermaier and A. Wassermann, Computational methods in subspace designs, In M. Greferath, M.O. Pavčević, N. Silberstein, and M.A. Vázquez-Castro, editors, Network Coding and Subspace Designs, Springer International Publishing, (2018), 213-244. |
[10] | T. Itoh, A new family of 2-designs over $ GF(q)$ admitting $ SL_m(q^l)$, Geom. Dedicata, 69 (1998), 261-286. doi: 10.1023/A:1005057610394. |
[11] | M. Kiermaier and R. Laue, Derived and residual subspace designs, Adv. Math. Commun., 9 (2015), 105-115. doi: 10.3934/amc.2015.9.105. |
[12] | M. Kiermaier, R. Laue and A. Wassermann, A new series of large sets of subspace designs over the binary field, Des. Codes Cryptogr., 86 (2018), 251-268. doi: 10.1007/s10623-017-0349-1. |
[13] | E. Kramer and D. Mesner, t-designs on hypergraphs, Discrete Math., 15 (1976), 263-296. |
[14] | M. Miyakawa, A. Munemasa and S. Yoshiara, On a class of small 2-designs over $ GF(q)$, J. Combin. Des., 3 (1995), 61-77. doi: 10.1002/jcd.3180030108. |
[15] | H. Suzuki, 2-designs over $ GF(2^m)$, Graph. Combinator., 6 (1990), 293-296. doi: 10.1007/BF01787580. |
[16] | H. Suzuki, On the inequalities of t-designs over a finite field, Eur. J. Comb., 11 (1990), 601-607. doi: 10.1016/S0195-6698(13)80045-5. |
[17] | H. Suzuki, 2-designs over $ GF(q)$, Graph. Combinator., 8 (1992), 381-389. doi: 10.1007/BF02351594. |
[18] | S. Thomas, Designs over finite fields, Geom. Dedicata, 24 (1987), 237-242. doi: 10.1007/BF00150939. |
[19] | A. Wassermann, Finding simple t-designs with enumeration techniques, J. Combin. Des., 6 (1998), 79-90. doi: 3.0.CO;2-S">10.1002/(SICI)1520-6610(1998)6:2<79::AID-JCD1>3.0.CO;2-S. |