Nothing Special   »   [go: up one dir, main page]

\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

New 2-designs over finite fields from derived and residual designs

  • * Corresponding author: Michael Braun

    * Corresponding author: Michael Braun 
Abstract / Introduction Full Text(HTML) Figure(1) / Table(1) Related Papers Cited by
  • Based on the existence of designs for the derived and residual parameters of admissible parameter sets of designs over finite fields we obtain a new infinite series of designs over finite fields for arbitrary prime powers $q$ with parameters $2\text{-}(8,4,\frac{(q^6-1)(q^3-1)}{(q^2-1)(q-1)};q)$ as well as designs with parameters $2\text{-}(10,4,85λ;2)$, $2\text{-}(10,5,765λ;2)$, $2\text{-}(11,5,6205λ;2)$, $2\text{-}(11,5,502605λ;2)$, and $2\text{-}(12,6,423181λ;2)$ for $λ = 7,12,19,21,22,24,31,36,42,43,48,49,55,60,63$.

    Mathematics Subject Classification: Primary: 51E20; Secondary: 05B05, 05B25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Connections of parameters

    Table 1.  $2\text{-}(9,k,\lambda;2)$ designs for $k\in\{3,4\}$

    $t\text{-}(n,k,\lambda;q)$ $G$ $|A_{t,k}^G|$ $\lambda$
    $2\text{-}(9,3,\lambda;2)$ $N(3,2^3)$ $31\!\times\!529$ $21$, $22$, $42$, $43$, $63$
    $N(8,2)\!\times\! 1$ $28\!\times\!408$ $7$, $12$, $19$, $24$, $31$, $36$, $43$, $48$,
    $55$, $60$
    $M(3,2^3)$ $40\!\times\!460$ $49$
    $2\text{-}(9,4,\lambda;2)$ $N(9,2)$ $11\!\times\!725$ $21$, $63$, $84$, $126$, $147$, $189$,
    $210$, $252$, $273$, $315$, $336$, $378$,
    $399$, $441$, $462$, $504$, $525$, $567$,
    $588$, $630$, $651$, $693$, $714$, $756$,
    $777$, $819$, $840$, $882$, $903$, $945$,
    $966$, $1008$, $1029$, $1071$, $1092$,
    $1134$, $1155$, $1197$, $1218$, $1260$,
    $1281$, $1323$
     | Show Table
    DownLoad: CSV
  • [1] M. Braun, Designs over the binary field from the complete monomial group, Australas. J. Combin., 67 (2017), 470-475. 
    [2] M. Braun, Some new designs over finite fields, Bayreuth. Math. Schr., 74 (2005), 58-68. 
    [3] M. Braun, T. Etzion, P. R. J. Östergård, A. Vardy and A. Wassermann, Existence of q-analogs of steiner systems, Forum Math. Pi, 4 (2016), e7, 14pp. doi: 10.1017/fmp.2016.5.
    [4] M. BraunA. Kerber and R. Laue, Systematic construction of q-analogs of designs, Des. Codes Cryptogr., 34 (2005), 55-70.  doi: 10.1007/s10623-003-4194-z.
    [5] M. BraunM. KiermaierA. Kohnert and R. Laue, Large sets of subspace designs, J. Combin. Theory Ser. A, 147 (2017), 155-185.  doi: 10.1016/j.jcta.2016.11.004.
    [6] M. BraunA. KohnertP. R. J. Östergård and A. Wassermann, Large sets of t-designs over finite fields, J. Combin. Theory Ser. A, 124 (2014), 195-202.  doi: 10.1016/j.jcta.2014.01.008.
    [7] S. Braun, Construction of q-analogs of combinatorial designs, ALCOMA 2010, Thurnau, 2010.
    [8] M. Braun, M. Kiermaier and A. Wassermann, q-analogs of designs: subspace designs, In M. Greferath, M.O. Pavčević, N. Silberstein, and M.A. Vázquez-Castro, editors, Network Coding and Subspace Designs, Springer International Publishing, (2018), 171-211.
    [9] M. Braun, M. Kiermaier and A. Wassermann, Computational methods in subspace designs, In M. Greferath, M.O. Pavčević, N. Silberstein, and M.A. Vázquez-Castro, editors, Network Coding and Subspace Designs, Springer International Publishing, (2018), 213-244.
    [10] T. Itoh, A new family of 2-designs over $ GF(q)$ admitting $ SL_m(q^l)$, Geom. Dedicata, 69 (1998), 261-286.  doi: 10.1023/A:1005057610394.
    [11] M. Kiermaier and R. Laue, Derived and residual subspace designs, Adv. Math. Commun., 9 (2015), 105-115.  doi: 10.3934/amc.2015.9.105.
    [12] M. KiermaierR. Laue and A. Wassermann, A new series of large sets of subspace designs over the binary field, Des. Codes Cryptogr., 86 (2018), 251-268.  doi: 10.1007/s10623-017-0349-1.
    [13] E. Kramer and D. Mesner, t-designs on hypergraphs, Discrete Math., 15 (1976), 263-296.
    [14] M. MiyakawaA. Munemasa and S. Yoshiara, On a class of small 2-designs over $ GF(q)$, J. Combin. Des., 3 (1995), 61-77.  doi: 10.1002/jcd.3180030108.
    [15] H. Suzuki, 2-designs over $ GF(2^m)$, Graph. Combinator., 6 (1990), 293-296.  doi: 10.1007/BF01787580.
    [16] H. Suzuki, On the inequalities of t-designs over a finite field, Eur. J. Comb., 11 (1990), 601-607.  doi: 10.1016/S0195-6698(13)80045-5.
    [17] H. Suzuki, 2-designs over $ GF(q)$, Graph. Combinator., 8 (1992), 381-389.  doi: 10.1007/BF02351594.
    [18] S. Thomas, Designs over finite fields, Geom. Dedicata, 24 (1987), 237-242.  doi: 10.1007/BF00150939.
    [19] A. Wassermann, Finding simple t-designs with enumeration techniques, J. Combin. Des., 6 (1998), 79-90.  doi: 3.0.CO;2-S">10.1002/(SICI)1520-6610(1998)6:2<79::AID-JCD1>3.0.CO;2-S.
  • 加载中

Figures(1)

Tables(1)

SHARE

Article Metrics

HTML views(2005) PDF downloads(391) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return