Vasiga and Shallit [
Citation: |
Figure 1. This figure (taken from [14]) illustrates the inductive definition of $T_V$ when $V$ is a $\nu$-series with four components $V=(\nu_1,\nu_2,\nu_3,\nu_4)$. A node $v$ labelled by a rooted tree $T$ indicates that $v$ is the root of a tree isomorphic to $T$
L. Blum
, M. Blum
and M. Shub
, A simple unpredictable pseudo-random number generator, SIAM J. Comput., 15 (1986)
, 364-383.
doi: 10.1137/0215025. |
|
R. Brent
and J. Pollard
, Factorization of the eighth Fermat number, Math. Comput., 36 (1981)
, 627-630.
doi: 10.2307/2007666. |
|
W. Chou
and I. E. Shparlinski
, On the cycle structure of repeated exponentiation modulo a prime, J. Number Theory, 107 (2004)
, 345-356.
doi: 10.1016/j.jnt.2004.04.005. |
|
D. A. Cox, Primes of the Form $x^2+ny^2$: Fermat, Class Field Theory and Complex Multiplication, Wiley-Interscience, 1989.
|
|
FIPS PUB 186-4,
Digital Signature Standard (DSS), Federal Information Processing Standards Publication, NIST, 2013.
|
|
R. Lidl
and W. B. Müller
, Generalization of the Fibonacci pseudoprime test, Discrete Math., 92 (1991)
, 211-220.
doi: 10.1016/0012-365X(91)90282-7. |
|
W. Meidl
and A. Winterhof
, On the linear complexity profile of nonlinear congruential pseudorandom number generators with Rédei functions, Finite Fields Appl., 13 (2007)
, 628-634.
doi: 10.1016/j.ffa.2005.10.001. |
|
NIST Special Publication 800-56A,
Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography, NIST, 2007.
|
|
R. Nobauer
, Cryptoanalysis of the Rédei scheme, Contrib. General Algebra, 3 (1984)
, 255-264.
|
|
R. Nobauer
, Key distribution systems based on polynomial functions and Rédei functions, Probl. Contr. Inf. Theory, 15 (1986)
, 91-100.
|
|
R. Pieper
, Cryptanalysis of Rédei-and Dickson permutations on arbitrary finite rings, AAECC, 4 (1993)
, 59-76.
doi: 10.1007/BF01270400. |
|
J. M. Pollard
, A monte carlo method for factorization, BIT, 15 (1975)
, 331-334.
|
|
J. M. Pollard
, Monte carlo methods for index computation (mod $p$), Math. Comp., 32 (1978)
, 918-924.
doi: 10.2307/2006496. |
|
C. Qureshi
and D. Panario
, Rédei actions on finite fields and multiplication map in cyclic groups, SIAM J. Discrete Math., 29 (2015)
, 1486-1503.
doi: 10.1137/140993338. |
|
A. Sakzad
, M. Sadeghi
and D. Panario
, Cycle structure of permutation functions over finite fields and their applications, Adv. Math. Commun., 6 (2012)
, 347-361.
doi: 10.3934/amc.2012.6.347. |
|
M. Sha
, Digraphs from endomorphisms of finite cyclic groups, J. Combin. Math. Combin. Comp., 83 (2012)
, 105-120.
|
|
T. Vasiga
and J. Shallit
, On the iteration of certain quadratic maps over $GF(p)$, Discrete Math., 277 (2004)
, 219-240.
doi: 10.1016/S0012-365X(03)00158-4. |
|
M. Wiener and R. Zuccherato, Faster attacks on elliptic curve cryptosystems, in Selected
Areas in Cryptography, 1998,190-200.
doi: 10.1007/3-540-48892-8_15. |
This figure (taken from [14]) illustrates the inductive definition of