Citation: |
[1] |
T. Agoh, K. Dilcher and L. Skula, Fermat quotients for composite moduli, J. Number Theory, 66 (1997), 29-50.doi: 10.1006/jnth.1997.2162. |
[2] |
Z. Chen and X. Du, On the linear complexity of binary threshold sequences derived from Fermat quotients, Des. Codes Cryptogr., 67 (2013), 317-323.doi: 10.1007/s10623-012-9608-3. |
[3] |
Z. Chen, L. Hu and X. Du, Linear complexity of some binary sequences derived from Fermat quotients, China Commun., 9 (2012), 105-108.doi: 10.1007/s10623-012-9608-3. |
[4] |
Z. Chen, A. Ostafe and A. Winterhof, Structure of pseudorandom numbers derived from Fermat quotients, in Proc. WAIFI 2010, Springer-Verlag, Heidelberg, 2010, 73-85.doi: 10.1007/978-3-642-13797-6_6. |
[5] |
Z. Chen and A. Winterhof, On the distribution of pseudorandom numbers and vectors derived from Euler-Fermat quotients, Int. J. Number Theory, 8 (2012), 631-641.doi: 10.1142/S1793042112500352. |
[6] |
R. Crandall, K. Dilcher and C. Pomerance, A search for Wieferich and Wilson primes, Math. Comp., 66 (1997), 433-449.doi: 10.1090/S0025-5718-97-00791-6. |
[7] |
A. Cunningham, Period-lengths of circulates, Messenger Math., 29 (1900), 145-179. |
[8] |
X. Du, Z. Chen and L. Hu, Linear complexity of binary sequences derived from Euler quotients with prime-power modulus, Inform. Proc. Letters, 112 (2012), 604-609.doi: 10.1016/j.ipl.2012.04.011. |
[9] |
X. Du, A. Klapper and Z. Chen, Linear complexity of pseudorandom sequences generated by Fermat quotients and their generalizations, Inform. Proc. Letters, 112 (2012), 233-237.doi: 10.1016/j.ipl.2011.11.017. |
[10] |
R. Ernvall and T. Metsänkylä, On the p-divisibility of Fermat quotients, Math. Comp., 66 (1997), 1353-1365.doi: 10.1090/S0025-5718-97-00843-0. |
[11] |
D. Gomez and A. Winterhof, Multiplicative character sums of Fermat quotients and pseudorandom sequences, Period. Math. Hungar., 64 (2012), 161-168.doi: 10.1007/s10998-012-3747-1. |
[12] |
A. Granville, Some conjectures related to Fermat's Last Theorem, in Number Theory, Walter de Gruyter, Berlin, 1990, 177-192. |
[13] |
W. Keller and J. Richstein, Prime solutions $p$ of $a^{p-1}\equiv 1$ (mod $p^2$) for prime bases $a$, Math. Comput., 74 (2005), 927-936.doi: 10.1090/S0025-5718-04-01666-7. |
[14] |
R. Lidl and H. Niederreiter, Finite Fields, Addison-Wesley, Reading, MA, 1983. |
[15] |
J. L. Massey, Shift register synthesis and BCH decoding, IEEE Trans. Inform. Theory, 15 (1969), 122-127. |
[16] |
A. Ostafe and I. E. Shparlinski, Pseudorandomness and dynamics of Fermat quotients, SIAM J. Discrete Math., 25 (2011), 50-71.doi: 10.1137/100798466. |
[17] |
A. Winterhof, Linear complexity and related complexity measures, in Selected Topics in Information and Coding Theory, World Scientic, 2010, 3-40.doi: 10.1142/9789812837172_0001. |
[18] |
M. Sha, The arithmetic of Carmichael quotients, preprint, arXiv:1108.2579 doi: 10.1007/s10998-014-0079-3. |
[19] |
I. E. Shparlinski, Bounds of multiplicative character sums with Fermat quotients of primes, Bull. Aust. Math. Soc., 83 (2011), 456-462.doi: 10.1017/S000497271000198X. |
[20] |
I. E. Shparlinski, Character sums with Fermat quotients, Quart. J. Math., 62 (2011), 1031-1043.doi: 10.1093/qmath/haq028. |
[21] |
I. E. Shparlinski, Fermat quotients: Exponential sums, value set and primitive roots, Bull. London Math. Soc., 43 (2011), 1228-1238.doi: 10.1112/blms/bdr058. |
[22] |
I. E. Shparlinski, On the value set of Fermat quotients, Proc. Amer. Math. Soc., 140 (2012), 1199-1206.doi: 10.1090/S0002-9939-2011-11203-6. |