Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-20T13:41:23.287Z Has data issue: false hasContentIssue false

Nonstandard analysis in topology: nonstandard and standard compactifications

Published online by Cambridge University Press:  12 March 2014

S. Salbany
Affiliation:
Department of Mathematics, Unisa, Pretoria 0002, Republic of South Africa, E-mail:salbasdo@unisa.ac.za
Todor Todorov
Affiliation:
Departmentof Mathematics, California Polytechnic State University, 1431 18th St. Los Osos, CA 93402, USA, E-mail:ttodorov@aboe.calpoly.edu

Abstract

Let (X, T) be a topological space and *X a nonstandard extension of X. Sets of the form *G. where GT, form a base for the “standard” topology ST on *X. The topological space (*X, ST) will be used to study compactifications of (X, T) in a systematic way.

Type
Research Article
Copyright
Copyright © Association for Symbolic Logic 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Adámek, J., Herrlich, H., and Strecker, G. E., Abstract and concrete categories, John Wiley & Sons, Inc., 1990.Google Scholar
[2]Gierz, G., Hofmann, K.-H., Keimel, K., Lawson, J. D., Mislove, M.. and Scott, D. S., A compendium of continuous lattices, Springer-Verlag, 1980.CrossRefGoogle Scholar
[3]Gillman, L. and Jerison, M., Rings of continuous functions, Van Nostrand, 1960.CrossRefGoogle Scholar
[4]Hurd, A. E. and Loeb, P. A., An introduction to nonstandard real analysis, Academic Press, New York, 1985.Google Scholar
[5]Stroyan, K. D. and Luxemburg, W. A. J., Introduction to the theory of infinitesimals, Academic Press, 1976.Google Scholar