Article contents
Decidable regularly closed fields of algebraic numbers
Published online by Cambridge University Press: 12 March 2014
Extract
A field K is regularly closed if every absolutely irreducible affine variety defined over K has K-rational points. This notion was first isolated by Ax [A] in his work on the elementary theory of finite fields. Later Jarden [J2] and Jarden and Kiehne [JK] extended this in different directions. One of the primary results in this area is that the elementary properties of a regularly closed field K with a free Galois group (on either finitely or countably many generators) are determined by the set of integer polynomials in one indeterminate with a zero in K. The method of proof employed in [J1], [J2] and [JK] is unusual for algebra since it is a measure-theoretic argument. In this brief summary we have not made any attempt at completeness. We refer the reader to the recent paper of Cherlin, van den Dries, and Macintyre [CDM] and to the forthcoming book by Fried and Jarden [FJ] for a more thorough discussion of the latest results. We would like to thank Moshe Jarden, Angus Macintyre, and Zoe Chatzidakis for their comments on an earlier version of this paper.
A countable field K is ω-free if the absolute Galois group , where is the algebraic closure of K and is the free profinite group on ℵ0 generators.
- Type
- Research Article
- Information
- Copyright
- Copyright © Association for Symbolic Logic 1985
References
REFERENCES
- 1
- Cited by