Filomat 2022 Volume 36, Issue 20, Pages: 6821-6829
https://doi.org/10.2298/FIL2220821S
Full text ( 197 KB)
Intrinsic strong shape of global attractors
Shekutkovski Nikita (University of Ss. Cyril and Methodius, Faculty of Natural Sciences and Mathematics, Institute of Mathematics, Skopje, R.N. Macedonia), nikita@pmf.ukim.mk
Shoptrajanov Martin (University of Ss. Cyril and Methodius, Faculty of Natural Sciences and Mathematics, Institute of Mathematics, Skopje, R.N. Macedonia), martin@pmf.ukim.mk
We present a proof of the strong shape theorem for global attractors in
compact metric spaces using the intrinsic approach to strong shape from [18]
which combines continuity over a covering and the corresponding homotopies
of second order.
Keywords: Intrinsic shape, strong shape, continuity over a covering, proximate sequence, attractor
Show references
B. Andonovikj, N. Shekutkovski, Strong shape for paracompacta, Glasnik Mat. 52(72) (2017) 331-350.
B.A. Bogatyi, V.I. Gutsu, On the structure of attracting compacta, Differ. Urav. 25 (1989) 907-909.
K. Borsuk, Theory of Shape, Monografie Matematyczne, vol.59, Polish Scientific Publishers, Warsaw, 1975.
J. Felt, ϵ-continuity and shape, Proc. Amer. Math. Soc. 46 (1974) 426-430.
J.B. Gunther, J. Segal, Every attractor of a flow on a manifold has the shape of a finite polyhedron, Proc. Amer. Math. Soc. 119 (1993) 321-329.
A. Giraldo, J.M.R. Sanjurjo, On the global structure of invariant regions of flows with asymptotically stable attractors, Math. Z. 232 (1999) 739-746.
H.M. Hastings, A higher dimensional Poincare-Bendixon theorem, Glasnik Mat. 34 (1979) 263-268.
L. Kapitanski, I. Rodnianski, Shape and Morse theory of attractors, Commun. Pure Appl. Math. 53 (2000) 218-242.
S. Mardešić, J.Segal, Shape theory, North-Holland, Amsterdam, 1982.
S. Mardešić, Strong Shape and Homology, Springer, 2000.
J. van Mill, G.M. Reed, Editors, Open Problems In Topology, North Holland, 1990.
Z. Misajleski, N. Shekutkovski, Equivalence of intrinsic shape and shape, God. Zb. Inst. Mat. 42 (2013) 69-82.
M. Mrozek, Shape index and other indices of Conley type for local maps on locally compact Hausdorff spaces, Fund. Math. 145 (1994) 15-37.
J.W. Robbin, D. Salamon, Dynamical systems, shape theory and the Conley index, Ergodic Th. Dynamical Syst. 8 (1988) 375-393.
J.T. Roggers, The shape of a cross-section of the solution funnel of an ordinary differential equation, Illinois J. Math. 21 (1977) 420-426.
J.M.R. Sanjurjo, A non continuous description of the shape category of compacta, Quart. J. Math. Oxford 40 (1989) 351-359.
J.M.R. Sanjurjo, On the structure of uniform attractors, J. Math. Anal. Appl 192 (1995) 519-528.
N. Shekutkovski, Intrinsic definition of strong shape for compact metric spaces, Topology Proc. 39 (2012) 27-39.
N. Shekutkovski, M. Shoptrajanov, Intrinsic shape of the chain recurrent set, Topology Apli. 202 (2016) 117-126.
H. Vaughan, On locally compact metrizable spaces, Bull. Amer. Math. Soc. 43 (1937) 532-535.