Nothing Special   »   [go: up one dir, main page]

Journal of Information Processing
Online ISSN : 1882-6652
ISSN-L : 1882-6652
 
On Rényi Differential Privacy in Statistics-based Synthetic Data Generation
Takayuki MiuraToshiki ShibaharaMasanobu KiiAtsunori IchikawaJuko YamamotoKoji Chida
Author information
JOURNAL FREE ACCESS

2023 Volume 31 Pages 812-820

Details
Abstract

Privacy protection with synthetic data generation often uses differentially private statistics and model parameters to quantitatively express theoretical security. However, these methods do not take into account privacy protection due to the randomness of data generation. In this paper, we theoretically evaluate Rényi differential privacy of the randomness in data generation of a synthetic data generation method that uses the mean vector and the covariance matrix of an original dataset. Specifically, for a fixed α > 1, we show the condition of ϵ such that the synthetic data generation satisfies (α, ϵ)-Rényi differential privacy under a bounded neighboring condition and an unbounded neighboring condition, respectively. In particular, under the unbounded condition, when the size of the original dataset and synthetic dataset is 10 million, the mechanism satisfies (4, 0.576)-Rényi differential privacy. We also show that when we translate it into the traditional (ϵ, δ)-differential privacy, the mechanism satisfies (4.46, 10-14)-differential privacy.

Content from these authors
© 2023 by the Information Processing Society of Japan
Previous article Next article
feedback
Top