Finding shortest non-trivial cycles in directed graphs on surfaces
DOI:
https://doi.org/10.20382/jocg.v7i1a7Abstract
Let $D$ be a weighted directed graph cellularly embedded in a surface of genus $g$, orientable or not, possibly with boundary. We describe algorithms to compute shortest non-contractible and shortest surface non-separating cycles in $D$, generalizing previous results that dealt with undirected graphs.Our first algorithm computes such cycles in $O(n^2\log n)$ time, where $n$ is the total number of vertices and edges of $D$, thus matching the complexity of the best general algorithm in the undirected case. It revisits and extends Thomassen's 3-path condition; the technique applies to other families of cycles as well.
We also provide more efficient algorithms in special cases, such as graphs with small genus or bounded treewidth, using a divide-and-conquer technique that simplifies the graph while preserving the topological properties of its cycles. Finally, we give an efficient output-sensitive algorithm, whose running time depends on the length of the shortest non-contractible or non-separating cycle.
Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).