Covering many points with a small-area box
DOI:
https://doi.org/10.20382/jocg.v10i1a8Abstract
Let $P$ be a set of $n$ points in the plane. We show how to find, for a given integer $k>0$, the smallest-area axis-parallel rectangle that covers $k$ points of $P$ in $O(nk^2 \log n+ n\log^2 n)$ time. We also consider the problem of, given a value $\alpha>0$, covering as many points of $P$ as possible with an axis-parallel rectangle of area at most $\alpha$. For this problem we give a probabilistic $(1-\varepsilon)$-approximation that works in near-linear time: In $O((n/\varepsilon^4)\log^3 n \log (1/\varepsilon))$ time we find an axis-parallel rectangle of area at most $\alpha$ that, with high probability, covers at least $(1-\varepsilon)\kappa^*$ points, where $\kappa^*$ is the maximum possible number of points that could be covered.Downloads
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).