In the current data-intensive era, the traditional hands-on method of conducting scientific research by exploring related publications to generate a testable hypothesis is well on its way of becoming obsolete within just a year or two. Analyzing the literature and data to automatically generate a hypothesis might become the
The Panama Canal, the 77-kilometer waterway connecting the Atlantic and Pacific oceans, has played a crucial role in international trade for more than a century. However, digging the Panama Canal was an exceedingly challenging process. A French effort in the late 19th century was abandoned because of equipment issues and a significant loss of labor due to tropical diseases transmitted by mosquitoes. The United States officially took control of the project in 1902. The United States replaced the unusable French equipment with new construction equipment that was designed for a much larger and faster scale of work. Colonel William C. Gorgas was appointed as the chief sanitation officer and charged with eliminating mosquito-spread illnesses. After overcoming these and additional trials and tribulations, the Canal successfully opened on August 15, 1914. The triumphant completion of the Panama Canal demonstrates that using the right tools and eliminating significant threats are critical steps in any project.
More than 100 years later, a paradigm shift is occurring, as we move into a data-centered era. Today, data are extremely rich but overwhelming, and extracting information out of data requires not only the right tools and methods but also awareness of major threats. In this data-intensive era, the traditional method of exploring the related publications and available datasets from previous experiments to arrive at a testable hypothesis is becoming obsolete. Consider the fact that a new article is published every 30 seconds (
Scouring the literature and data to generate a hypothesis might become the
Research communities in many disciplines are finally recognizing that with advances in information technology there needs to be new ways to extract entities from increasingly data-intensive publications and to integrate and analyze large-scale datasets. This provides a compelling opportunity to improve the process of knowledge discovery from the literature and datasets through use of knowledge graphs and an associated framework that integrates scholars, domain knowledge, datasets, workflows, and machines on a scale previously beyond our reach (